mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	update docs
Former-commit-id: a4a2e94241bea6f96590f6cb8ca8b5cddee1917e
This commit is contained in:
		
							parent
							
								
									25de4ce56a
								
							
						
					
					
						commit
						5c9da798b5
					
				
							
								
								
									
										69
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										69
									
								
								README.md
									
									
									
									
									
								
							@ -276,18 +276,19 @@ huggingface-cli login
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| python       | 3.8     | 3.10      |
 | 
			
		||||
| torch        | 1.13.1  | 2.2.0     |
 | 
			
		||||
| transformers | 4.37.2  | 4.39.3    |
 | 
			
		||||
| datasets     | 2.14.3  | 2.18.0    |
 | 
			
		||||
| accelerate   | 0.27.2  | 0.28.0    |
 | 
			
		||||
| transformers | 4.37.2  | 4.40.1    |
 | 
			
		||||
| datasets     | 2.14.3  | 2.19.1    |
 | 
			
		||||
| accelerate   | 0.27.2  | 0.30.0    |
 | 
			
		||||
| peft         | 0.9.0   | 0.10.0    |
 | 
			
		||||
| trl          | 0.8.1   | 0.8.1     |
 | 
			
		||||
| trl          | 0.8.1   | 0.8.6     |
 | 
			
		||||
 | 
			
		||||
| Optional     | Minimum | Recommend |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| CUDA         | 11.6    | 12.2      |
 | 
			
		||||
| deepspeed    | 0.10.0  | 0.14.0    |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.0    |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.5.6     |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.1    |
 | 
			
		||||
| vllm         | 0.4.0   | 0.4.2     |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.5.8     |
 | 
			
		||||
 | 
			
		||||
### Hardware Requirement
 | 
			
		||||
 | 
			
		||||
@ -305,24 +306,15 @@ huggingface-cli login
 | 
			
		||||
 | 
			
		||||
## Getting Started
 | 
			
		||||
 | 
			
		||||
### Data Preparation
 | 
			
		||||
 | 
			
		||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Please update `data/dataset_info.json` to use your custom dataset.
 | 
			
		||||
 | 
			
		||||
### Dependence Installation
 | 
			
		||||
### Installation
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
 | 
			
		||||
conda create -n llama_factory python=3.10
 | 
			
		||||
conda activate llama_factory
 | 
			
		||||
cd LLaMA-Factory
 | 
			
		||||
pip install -e .[metrics]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Extra dependencies available: deepspeed, metrics, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
 | 
			
		||||
Extra dependencies available: metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
 | 
			
		||||
 | 
			
		||||
<details><summary>For Windows users</summary>
 | 
			
		||||
 | 
			
		||||
@ -336,19 +328,41 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
### Train with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
 | 
			
		||||
### Data Preparation
 | 
			
		||||
 | 
			
		||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Please update `data/dataset_info.json` to use your custom dataset.
 | 
			
		||||
 | 
			
		||||
### Quickstart
 | 
			
		||||
 | 
			
		||||
The following 3 commands conduct LoRA fine-tuning, inference and merging for Llama3-8B-Instruct model, respectively.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
See [examples/README.md](examples/README.md) for advanced usage.
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> Use `llamafactory-cli help` to show help information.
 | 
			
		||||
 | 
			
		||||
### Use LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
 | 
			
		||||
 | 
			
		||||
> [!IMPORTANT]
 | 
			
		||||
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#train-with-command-line-interface) for distributed training.
 | 
			
		||||
> LLaMA Board GUI only supports training on a single GPU.
 | 
			
		||||
 | 
			
		||||
#### Use local environment
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli webui
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> To modify the default setting in the LLaMA Board GUI, you can use environment variables, e.g., `export CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False` (use `set` command on Windows OS).
 | 
			
		||||
> To modify the default setting in the LLaMA Board GUI, you can use environment variables, e.g., `export GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False` (use `set` command on Windows OS).
 | 
			
		||||
 | 
			
		||||
<details><summary>For Alibaba Cloud users</summary>
 | 
			
		||||
 | 
			
		||||
@ -389,21 +403,10 @@ docker compose -f ./docker-compose.yml up -d
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
### Train with Command Line Interface
 | 
			
		||||
 | 
			
		||||
See [examples/README.md](examples/README.md) for usage.
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> Use `llamafactory-cli train -h` to display arguments description.
 | 
			
		||||
 | 
			
		||||
### Deploy with OpenAI-style API and vLLM
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
 | 
			
		||||
    --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
 | 
			
		||||
    --template llama3 \
 | 
			
		||||
    --infer_backend vllm \
 | 
			
		||||
    --vllm_enforce_eager
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Download from ModelScope Hub
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										71
									
								
								README_zh.md
									
									
									
									
									
								
							
							
						
						
									
										71
									
								
								README_zh.md
									
									
									
									
									
								
							@ -163,7 +163,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
 | 
			
		||||
| [Yuan](https://huggingface.co/IEITYuan)                  | 2B/51B/102B                      | q_proj,v_proj     | yuan      |
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以得到更好的效果。
 | 
			
		||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以取得更好的效果。
 | 
			
		||||
>
 | 
			
		||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
 | 
			
		||||
>
 | 
			
		||||
@ -276,18 +276,19 @@ huggingface-cli login
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| python       | 3.8     | 3.10      |
 | 
			
		||||
| torch        | 1.13.1  | 2.2.0     |
 | 
			
		||||
| transformers | 4.37.2  | 4.39.3    |
 | 
			
		||||
| datasets     | 2.14.3  | 2.18.0    |
 | 
			
		||||
| accelerate   | 0.27.2  | 0.28.0    |
 | 
			
		||||
| transformers | 4.37.2  | 4.40.1    |
 | 
			
		||||
| datasets     | 2.14.3  | 2.19.1    |
 | 
			
		||||
| accelerate   | 0.27.2  | 0.30.0    |
 | 
			
		||||
| peft         | 0.9.0   | 0.10.0    |
 | 
			
		||||
| trl          | 0.8.1   | 0.8.1     |
 | 
			
		||||
| trl          | 0.8.1   | 0.8.6     |
 | 
			
		||||
 | 
			
		||||
| 可选项       | 至少     | 推荐      |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| CUDA         | 11.6    | 12.2      |
 | 
			
		||||
| deepspeed    | 0.10.0  | 0.14.0    |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.0    |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.5.6     |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.1    |
 | 
			
		||||
| vllm         | 0.4.0   | 0.4.2     |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.5.8     |
 | 
			
		||||
 | 
			
		||||
### 硬件依赖
 | 
			
		||||
 | 
			
		||||
@ -305,24 +306,15 @@ huggingface-cli login
 | 
			
		||||
 | 
			
		||||
## 如何使用
 | 
			
		||||
 | 
			
		||||
### 数据准备
 | 
			
		||||
 | 
			
		||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
 | 
			
		||||
 | 
			
		||||
### 安装依赖
 | 
			
		||||
### 安装 LLaMA Factory
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
 | 
			
		||||
conda create -n llama_factory python=3.10
 | 
			
		||||
conda activate llama_factory
 | 
			
		||||
cd LLaMA-Factory
 | 
			
		||||
pip install -e .[metrics]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
可选的额外依赖项:deepspeed、metrics、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
 | 
			
		||||
可选的额外依赖项:metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
 | 
			
		||||
 | 
			
		||||
<details><summary>Windows 用户指南</summary>
 | 
			
		||||
 | 
			
		||||
@ -336,19 +328,41 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
### 利用 LLaMA Board 可视化界面训练(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
 | 
			
		||||
### 数据准备
 | 
			
		||||
 | 
			
		||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
 | 
			
		||||
 | 
			
		||||
### 快速开始
 | 
			
		||||
 | 
			
		||||
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA 微调、推理和合并。
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)。
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> 使用 `llamafactory-cli help` 显示使用帮助。
 | 
			
		||||
 | 
			
		||||
### 使用 LLaMA Board 可视化界面(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
 | 
			
		||||
 | 
			
		||||
> [!IMPORTANT]
 | 
			
		||||
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#利用命令行接口训练)来进行多 GPU 分布式训练。
 | 
			
		||||
> LLaMA Board 可视化界面目前仅支持单 GPU 训练。
 | 
			
		||||
 | 
			
		||||
#### 使用本地环境
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli webui
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> 您可以使用环境变量来修改 LLaMA Board 可视化界面的默认设置,例如 `export CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False`(Windows 系统可使用 `set` 指令)。
 | 
			
		||||
> 您可以使用环境变量来修改 LLaMA Board 可视化界面的默认设置,例如 `export GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False`(Windows 系统可使用 `set` 指令)。
 | 
			
		||||
 | 
			
		||||
<details><summary>阿里云用户指南</summary>
 | 
			
		||||
 | 
			
		||||
@ -389,21 +403,10 @@ docker compose -f ./docker-compose.yml up -d
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
### 利用命令行接口训练
 | 
			
		||||
 | 
			
		||||
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> 您可以执行 `llamafactory-cli train -h` 来查看参数文档。
 | 
			
		||||
 | 
			
		||||
### 利用 vLLM 部署 OpenAI API
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
 | 
			
		||||
    --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
 | 
			
		||||
    --template llama3 \
 | 
			
		||||
    --infer_backend vllm \
 | 
			
		||||
    --vllm_enforce_eager
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 从魔搭社区下载
 | 
			
		||||
 | 
			
		||||
@ -1,9 +1,16 @@
 | 
			
		||||
We provide diverse examples about fine-tuning LLMs.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export CUDA_VISIBLE_DEVICES=0
 | 
			
		||||
cd examples/lora_single_gpu
 | 
			
		||||
llamafactory-cli train llama3_lora_pretrain.yaml # Do continuous pre-training using LoRA
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
examples/
 | 
			
		||||
├── lora_single_gpu/
 | 
			
		||||
│   ├── pretrain.sh: Do continuous pre-training using LoRA
 | 
			
		||||
│   ├── `
 | 
			
		||||
│   ├── sft.sh: Do supervised fine-tuning using LoRA
 | 
			
		||||
│   ├── reward.sh: Do reward modeling using LoRA
 | 
			
		||||
│   ├── ppo.sh: Do PPO training using LoRA
 | 
			
		||||
 | 
			
		||||
@ -10,7 +10,7 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --finetuning_type full \
 | 
			
		||||
    --use_badam \
 | 
			
		||||
    --badam_switch_mode descending \
 | 
			
		||||
    --badam_switch_interval 50 \
 | 
			
		||||
    --badam_switch_block_every 50 \
 | 
			
		||||
    --badam_verbose 2 \
 | 
			
		||||
    --output_dir ../../../saves/LLaMA2-7B/badam/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
 | 
			
		||||
@ -1,7 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora
 | 
			
		||||
@ -1,7 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora
 | 
			
		||||
@ -1,12 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --template fewshot \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --task mmlu \
 | 
			
		||||
    --split test \
 | 
			
		||||
    --lang en \
 | 
			
		||||
    --n_shot 5 \
 | 
			
		||||
    --batch_size 4
 | 
			
		||||
							
								
								
									
										2
									
								
								examples/inference/llama3.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								examples/inference/llama3.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,2 @@
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
template: llama3
 | 
			
		||||
							
								
								
									
										4
									
								
								examples/inference/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								examples/inference/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,4 @@
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
adapter_name_or_path: saves/llama3-8b/lora/sft
 | 
			
		||||
template: llama3
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
							
								
								
									
										4
									
								
								examples/inference/llama3_vllm.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								examples/inference/llama3_vllm.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,4 @@
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
template: llama3
 | 
			
		||||
infer_backend: vllm
 | 
			
		||||
vllm_enforce_eager: true
 | 
			
		||||
@ -1,8 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
# add `--visual_inputs True` to load MLLM
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora
 | 
			
		||||
@ -1,35 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage dpo \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --create_new_adapter \
 | 
			
		||||
    --dataset orca_rlhf \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/dpo \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 1e-5 \
 | 
			
		||||
    --num_train_epochs 1.0 \
 | 
			
		||||
    --max_samples 1000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --dpo_ftx 1.0 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
							
								
								
									
										39
									
								
								examples/lora_single_gpu/llama3_lora_dpo.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										39
									
								
								examples/lora_single_gpu/llama3_lora_dpo.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,39 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: dpo
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
dpo_ftx: 1.0
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: orca_rlhf
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/dpo
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.00001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
							
								
								
									
										19
									
								
								examples/lora_single_gpu/llama3_lora_eval.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								examples/lora_single_gpu/llama3_lora_eval.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,19 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
adapter_name_or_path: saves/llama3-8b/lora/sft
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
task: mmlu
 | 
			
		||||
split: test
 | 
			
		||||
template: fewshot
 | 
			
		||||
lang: en
 | 
			
		||||
n_shot: 5
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
save_dir: saves/llama3-8b/lora/eval
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
batch_size: 4
 | 
			
		||||
							
								
								
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_orpo.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_orpo.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,38 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: orpo
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: orca_rlhf
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/orpo
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.00001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
							
								
								
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_ppo.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_ppo.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,38 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
reward_model: saves/llama3-8b/lora/reward
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: ppo
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: identity,alpaca_gpt4_en
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/ppo
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.00001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# generate
 | 
			
		||||
max_new_tokens: 512
 | 
			
		||||
top_k: 0
 | 
			
		||||
top_p: 0.9
 | 
			
		||||
							
								
								
									
										24
									
								
								examples/lora_single_gpu/llama3_lora_predict.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								examples/lora_single_gpu/llama3_lora_predict.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,24 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
adapter_name_or_path: saves/llama3-8b/lora/sft
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: sft
 | 
			
		||||
do_predict: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: identity,alpaca_gpt4_en
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 50
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/predict
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
predict_with_generate: true
 | 
			
		||||
							
								
								
									
										37
									
								
								examples/lora_single_gpu/llama3_lora_pretrain.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								examples/lora_single_gpu/llama3_lora_pretrain.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,37 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: pt
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: c4_demo
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.0001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
							
								
								
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_reward.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_reward.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,38 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: rm
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: orca_rlhf
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/reward
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.00001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
							
								
								
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								examples/lora_single_gpu/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,38 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: identity,alpaca_gpt4_en
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.0001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
							
								
								
									
										22
									
								
								examples/lora_single_gpu/llama3_preprocess.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								examples/lora_single_gpu/llama3_preprocess.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,22 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: identity,alpaca_gpt4_en
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
tokenized_path: saves/llama3-8b/dataset/sft # use `tokenized_path` in config to load data
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
							
								
								
									
										39
									
								
								examples/lora_single_gpu/llava1_5_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										39
									
								
								examples/lora_single_gpu/llava1_5_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,39 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
 | 
			
		||||
visual_inputs: true
 | 
			
		||||
 | 
			
		||||
# method
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
 | 
			
		||||
# dataset
 | 
			
		||||
dataset: mllm_demo
 | 
			
		||||
template: vicuna
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
# output
 | 
			
		||||
output_dir: saves/llava1_5-7b/lora/sft
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
# train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
learning_rate: 0.0001
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_steps: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
# eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
@ -1,32 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage orpo \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --dataset orca_rlhf \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/orpo \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 1e-5 \
 | 
			
		||||
    --num_train_epochs 1.0 \
 | 
			
		||||
    --max_samples 1000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,32 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage ppo \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --create_new_adapter \
 | 
			
		||||
    --dataset alpaca_gpt4_en \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --reward_model ../../saves/LLaMA2-7B/lora/reward \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/ppo \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 512 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --learning_rate 1e-5 \
 | 
			
		||||
    --num_train_epochs 1.0 \
 | 
			
		||||
    --max_samples 1000 \
 | 
			
		||||
    --top_k 0 \
 | 
			
		||||
    --top_p 0.9 \
 | 
			
		||||
    --max_new_tokens 256 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,19 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_predict \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/predict \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --max_samples 20 \
 | 
			
		||||
    --predict_with_generate
 | 
			
		||||
@ -1,19 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
# use `--tokenized_path` in training script to load data
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES= llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --tokenized_path ../../saves/datasets/sft
 | 
			
		||||
@ -1,31 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage pt \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --dataset c4_demo \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/pretrain \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 10000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,33 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage rm \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --create_new_adapter \
 | 
			
		||||
    --dataset orca_rlhf \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/reward \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --learning_rate 1e-5 \
 | 
			
		||||
    --num_train_epochs 1.0 \
 | 
			
		||||
    --max_samples 5000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,32 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,33 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path llava-hf/llava-1.5-7b-hf \
 | 
			
		||||
    --visual_inputs \
 | 
			
		||||
    --dataset mllm_demo \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template vicuna \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --preprocessing_num_workers 16 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --warmup_steps 20 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 100.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
							
								
								
									
										11
									
								
								examples/merge_lora/llama3_gptq.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										11
									
								
								examples/merge_lora/llama3_gptq.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,11 @@
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
template: llama3
 | 
			
		||||
 | 
			
		||||
# export
 | 
			
		||||
export_dir: models/llama3_gptq
 | 
			
		||||
export_quantization_bit: 4
 | 
			
		||||
export_quantization_dataset: data/c4_demo.json
 | 
			
		||||
export_size: 2
 | 
			
		||||
export_device: cpu
 | 
			
		||||
export_legacy_format: false
 | 
			
		||||
							
								
								
									
										13
									
								
								examples/merge_lora/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								examples/merge_lora/llama3_lora_sft.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,13 @@
 | 
			
		||||
# Note: DO NOT use quantized model or quantization_bit when merging lora weights
 | 
			
		||||
 | 
			
		||||
# model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
adapter_name_or_path: saves/llama3-8b/lora/sft
 | 
			
		||||
template: llama3
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
 | 
			
		||||
# export
 | 
			
		||||
export_dir: models/llama3_lora_sft
 | 
			
		||||
export_size: 2
 | 
			
		||||
export_device: cpu
 | 
			
		||||
export_legacy_format: false
 | 
			
		||||
@ -1,12 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
# DO NOT use quantized model or quantization_bit when merging lora weights
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --export_dir ../../models/llama2-7b-sft \
 | 
			
		||||
    --export_size 2 \
 | 
			
		||||
    --export_device cpu \
 | 
			
		||||
    --export_legacy_format False
 | 
			
		||||
@ -1,11 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
# NEED TO run `merge.sh` before using this script
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
 | 
			
		||||
    --model_name_or_path ../../models/llama2-7b-sft \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --export_dir ../../models/llama2-7b-sft-int4 \
 | 
			
		||||
    --export_quantization_bit 4 \
 | 
			
		||||
    --export_quantization_dataset ../../data/c4_demo.json \
 | 
			
		||||
    --export_size 2 \
 | 
			
		||||
    --export_legacy_format False
 | 
			
		||||
@ -1,30 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,30 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path TheBloke/Llama-2-7B-AWQ \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,31 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path meta-llama/Llama-2-7b-hf \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --quantization_bit 4 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
@ -1,30 +0,0 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
 | 
			
		||||
    --stage sft \
 | 
			
		||||
    --do_train \
 | 
			
		||||
    --model_name_or_path TheBloke/Llama-2-7B-GPTQ \
 | 
			
		||||
    --dataset alpaca_gpt4_en,glaive_toolcall \
 | 
			
		||||
    --dataset_dir ../../data \
 | 
			
		||||
    --template default \
 | 
			
		||||
    --finetuning_type lora \
 | 
			
		||||
    --lora_target q_proj,v_proj \
 | 
			
		||||
    --output_dir ../../saves/LLaMA2-7B/lora/sft \
 | 
			
		||||
    --overwrite_cache \
 | 
			
		||||
    --overwrite_output_dir \
 | 
			
		||||
    --cutoff_len 1024 \
 | 
			
		||||
    --per_device_train_batch_size 1 \
 | 
			
		||||
    --per_device_eval_batch_size 1 \
 | 
			
		||||
    --gradient_accumulation_steps 8 \
 | 
			
		||||
    --lr_scheduler_type cosine \
 | 
			
		||||
    --logging_steps 10 \
 | 
			
		||||
    --save_steps 100 \
 | 
			
		||||
    --eval_steps 100 \
 | 
			
		||||
    --evaluation_strategy steps \
 | 
			
		||||
    --load_best_model_at_end \
 | 
			
		||||
    --learning_rate 5e-5 \
 | 
			
		||||
    --num_train_epochs 3.0 \
 | 
			
		||||
    --max_samples 3000 \
 | 
			
		||||
    --val_size 0.1 \
 | 
			
		||||
    --plot_loss \
 | 
			
		||||
    --fp16
 | 
			
		||||
							
								
								
									
										27
									
								
								examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,27 @@
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
model_name_or_path: BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf
 | 
			
		||||
dataset: alpaca_gpt4_en,glaive_toolcall
 | 
			
		||||
dataset_dir: data
 | 
			
		||||
template: default
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: q_proj,v_proj
 | 
			
		||||
output_dir: ../../saves/LLaMA2-7B/lora/sft
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 100
 | 
			
		||||
eval_steps: 100
 | 
			
		||||
evaluation_strategy: steps
 | 
			
		||||
load_best_model_at_end: true
 | 
			
		||||
learning_rate: 5e-5
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
max_samples: 3000
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
plot_loss: true
 | 
			
		||||
fp16: true
 | 
			
		||||
							
								
								
									
										0
									
								
								examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										0
									
								
								examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										6
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								setup.py
									
									
									
									
									
								
							@ -20,12 +20,12 @@ def get_requires():
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
extra_require = {
 | 
			
		||||
    "deepspeed": ["deepspeed>=0.10.0"],
 | 
			
		||||
    "metrics": ["nltk", "jieba", "rouge-chinese"],
 | 
			
		||||
    "deepspeed": ["deepspeed>=0.10.0"],
 | 
			
		||||
    "bitsandbytes": ["bitsandbytes>=0.39.0"],
 | 
			
		||||
    "vllm": ["vllm>=0.4.0"],
 | 
			
		||||
    "galore": ["galore-torch"],
 | 
			
		||||
    "badam": ["badam"],
 | 
			
		||||
    "vllm": ["vllm>=0.4.0"],
 | 
			
		||||
    "bitsandbytes": ["bitsandbytes>=0.39.0"],
 | 
			
		||||
    "gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
 | 
			
		||||
    "awq": ["autoawq"],
 | 
			
		||||
    "aqlm": ["aqlm[gpu]>=1.1.0"],
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										9
									
								
								src/webui.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								src/webui.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,9 @@
 | 
			
		||||
from llmtuner.webui.interface import create_ui
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    create_ui().queue().launch(server_name="0.0.0.0", server_port=None, share=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    main()
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user