mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	update examples
Former-commit-id: 19681f93db399d695aa8e35f8ec2a9e720875baa
This commit is contained in:
		
							parent
							
								
									49b58fd6af
								
							
						
					
					
						commit
						46f441dd37
					
				@ -406,7 +406,7 @@ Please refer to [data/README.md](data/README.md) for checking the details about
 | 
			
		||||
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
@ -406,7 +406,7 @@ Docker 镜像:
 | 
			
		||||
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
@ -4,59 +4,57 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
 | 
			
		||||
 | 
			
		||||
## Table of Contents
 | 
			
		||||
 | 
			
		||||
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
 | 
			
		||||
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
 | 
			
		||||
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
 | 
			
		||||
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
 | 
			
		||||
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
 | 
			
		||||
- [LoRA Fine-Tuning](#lora-fine-tuning)
 | 
			
		||||
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
 | 
			
		||||
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
 | 
			
		||||
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
 | 
			
		||||
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
 | 
			
		||||
- [Extras](#extras)
 | 
			
		||||
 | 
			
		||||
## Examples
 | 
			
		||||
 | 
			
		||||
### LoRA Fine-Tuning on A Single GPU
 | 
			
		||||
### LoRA Fine-Tuning
 | 
			
		||||
 | 
			
		||||
#### (Continuous) Pre-Training
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Multimodal Supervised Fine-Tuning
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Reward Modeling
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### PPO Training
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### DPO/ORPO/SimPO Training
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### KTO Training
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Preprocess Dataset
 | 
			
		||||
@ -64,95 +62,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
 | 
			
		||||
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
 | 
			
		||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### QLoRA Fine-Tuning on a Single GPU
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### LoRA Fine-Tuning on Multiple GPUs
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning on Single Node
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning on Multiple Nodes
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### LoRA Fine-Tuning on Multiple NPUs
 | 
			
		||||
### QLoRA Fine-Tuning
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
 | 
			
		||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Full-Parameter Fine-Tuning on Multiple GPUs
 | 
			
		||||
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Full-Parameter Fine-Tuning
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning on Single Node
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Supervised Fine-Tuning on Multiple Nodes
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
 | 
			
		||||
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Merging LoRA Adapters and Quantization
 | 
			
		||||
@ -162,35 +144,33 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llam
 | 
			
		||||
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Quantizing Model using AutoGPTQ
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Inferring LoRA Fine-Tuned Models
 | 
			
		||||
 | 
			
		||||
Use `CUDA_VISIBLE_DEVICES=0,1` to infer models on multiple devices.
 | 
			
		||||
 | 
			
		||||
#### Use CLI
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Use Web UI
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Launch OpenAI-style API
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Extras
 | 
			
		||||
@ -198,32 +178,32 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
 | 
			
		||||
#### Full-Parameter Fine-Tuning using GaLore
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Full-Parameter Fine-Tuning using BAdam
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### LoRA+ Fine-Tuning
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Mixture-of-Depths Fine-Tuning
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### LLaMA-Pro Fine-Tuning
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
bash examples/extras/llama_pro/expand.sh
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### FSDP+QLoRA Fine-Tuning
 | 
			
		||||
 | 
			
		||||
@ -4,59 +4,57 @@
 | 
			
		||||
 | 
			
		||||
## 目录
 | 
			
		||||
 | 
			
		||||
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
 | 
			
		||||
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
 | 
			
		||||
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
 | 
			
		||||
- [多 NPU LoRA 微调](#多-npu-lora-微调)
 | 
			
		||||
- [多 GPU 全参数微调](#多-gpu-全参数微调)
 | 
			
		||||
- [LoRA 微调](#lora-微调)
 | 
			
		||||
- [QLoRA 微调](#qlora-微调)
 | 
			
		||||
- [全参数微调](#全参数微调)
 | 
			
		||||
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
 | 
			
		||||
- [推理 LoRA 模型](#推理-lora-模型)
 | 
			
		||||
- [杂项](#杂项)
 | 
			
		||||
 | 
			
		||||
## 示例
 | 
			
		||||
 | 
			
		||||
### 单 GPU LoRA 微调
 | 
			
		||||
### LoRA 微调
 | 
			
		||||
 | 
			
		||||
#### (增量)预训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 多模态指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 奖励模型训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### PPO 训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### DPO/ORPO/SimPO 训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### KTO 训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 预处理数据集
 | 
			
		||||
@ -64,95 +62,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
 | 
			
		||||
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 在 MMLU/CMMLU/C-Eval 上评估
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
 | 
			
		||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
 | 
			
		||||
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 单 GPU QLoRA 微调
 | 
			
		||||
 | 
			
		||||
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
 | 
			
		||||
#### 多机指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 基于 4 比特 AWQ 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 基于 2 比特 AQLM 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 多 GPU LoRA 微调
 | 
			
		||||
 | 
			
		||||
#### 在单机上进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 在多机上进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 使用 DeepSpeed ZeRO-3 平均分配显存
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 多 NPU LoRA 微调
 | 
			
		||||
### QLoRA 微调
 | 
			
		||||
 | 
			
		||||
#### 使用 DeepSpeed ZeRO-0 进行指令监督微调
 | 
			
		||||
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
 | 
			
		||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 多 GPU 全参数微调
 | 
			
		||||
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 基于 4 比特 AWQ 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 基于 2 比特 AQLM 量化进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 全参数微调
 | 
			
		||||
 | 
			
		||||
#### 在单机上进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 在多机上进行指令监督微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
 | 
			
		||||
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 合并 LoRA 适配器与模型量化
 | 
			
		||||
@ -162,35 +144,33 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llam
 | 
			
		||||
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 使用 AutoGPTQ 量化模型
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
 | 
			
		||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 推理 LoRA 模型
 | 
			
		||||
 | 
			
		||||
使用 `CUDA_VISIBLE_DEVICES=0,1` 进行多卡推理。
 | 
			
		||||
 | 
			
		||||
#### 使用命令行接口
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 使用浏览器界面
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 启动 OpenAI 风格 API
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 杂项
 | 
			
		||||
@ -198,32 +178,32 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
 | 
			
		||||
#### 使用 GaLore 进行全参数训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 使用 BAdam 进行全参数训练
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### LoRA+ 微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 深度混合微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### LLaMA-Pro 微调
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
bash examples/extras/llama_pro/expand.sh
 | 
			
		||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
 | 
			
		||||
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### FSDP+QLoRA 微调
 | 
			
		||||
 | 
			
		||||
@ -8,9 +8,6 @@ do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: all
 | 
			
		||||
 | 
			
		||||
### ddp
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
dataset: identity,alpaca_en_demo
 | 
			
		||||
template: llama3
 | 
			
		||||
@ -34,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
 | 
			
		||||
@ -32,6 +32,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
 | 
			
		||||
@ -31,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
 | 
			
		||||
@ -31,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
pure_bf16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
 | 
			
		||||
@ -1,41 +0,0 @@
 | 
			
		||||
### model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
 | 
			
		||||
### method
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: all
 | 
			
		||||
 | 
			
		||||
### ddp
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
dataset: identity,alpaca_en_demo
 | 
			
		||||
template: llama3
 | 
			
		||||
cutoff_len: 1024
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 2
 | 
			
		||||
learning_rate: 1.0e-4
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
eval_strategy: steps
 | 
			
		||||
eval_steps: 500
 | 
			
		||||
@ -32,6 +32,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -6,6 +6,7 @@ stage: kto
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: all
 | 
			
		||||
pref_beta: 0.1
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
dataset: kto_en_demo
 | 
			
		||||
@ -30,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -31,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### generate
 | 
			
		||||
max_new_tokens: 512
 | 
			
		||||
@ -22,3 +22,4 @@ overwrite_output_dir: true
 | 
			
		||||
### eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
predict_with_generate: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
@ -29,6 +29,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -30,6 +30,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -30,6 +30,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -6,9 +6,6 @@ stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: all
 | 
			
		||||
 | 
			
		||||
### ddp
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
deepspeed: examples/deepspeed/ds_z0_config.json
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
@ -34,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -6,9 +6,6 @@ stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: lora
 | 
			
		||||
lora_target: all
 | 
			
		||||
 | 
			
		||||
### ddp
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
deepspeed: examples/deepspeed/ds_z3_config.json
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
@ -34,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -31,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -30,6 +30,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -30,6 +30,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -31,6 +31,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
@ -30,6 +30,7 @@ num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
fp16: true
 | 
			
		||||
ddp_timeout: 180000000
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
val_size: 0.1
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user