[feat] support megatron-LM training by mcore_adapter (#9237)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
Kingsley
2025-10-26 16:21:30 +08:00
committed by GitHub
parent 129e918106
commit 13170577b2
14 changed files with 671 additions and 8 deletions

View File

@@ -32,7 +32,7 @@ from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_availab
from ..extras import logging
from ..extras.constants import CHECKPOINT_NAMES, EngineName
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
from ..extras.packages import is_transformers_version_greater_than
from ..extras.packages import is_mcore_adapter_available, is_transformers_version_greater_than
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
@@ -53,6 +53,13 @@ _INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, Generatin
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
if is_mcore_adapter_available() and is_env_enabled("USE_MCA"):
from mcore_adapter import TrainingArguments as McaTrainingArguments
_TRAIN_MCA_ARGS = [ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_MCA_CLS = tuple[ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
else:
_TRAIN_MCA_ARGS = []
_TRAIN_MCA_CLS = tuple()
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
r"""Get arguments from the command line or a config file."""
@@ -197,6 +204,27 @@ def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
def _parse_train_mca_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_MCA_CLS:
parser = HfArgumentParser(_TRAIN_MCA_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
model_args, data_args, training_args, finetuning_args, generating_args = _parse_args(
parser, args, allow_extra_keys=allow_extra_keys
)
_configure_mca_training_args(training_args, data_args, finetuning_args)
return model_args, data_args, training_args, finetuning_args, generating_args
def _configure_mca_training_args(training_args, data_args, finetuning_args) -> None:
"""Patch training args to avoid args checking errors and sync MCA settings."""
training_args.predict_with_generate = False
training_args.generation_max_length = data_args.cutoff_len
training_args.generation_num_beams = 1
training_args.use_mca = True
finetuning_args.use_mca = True
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
@@ -216,7 +244,11 @@ def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Ray
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
if is_env_enabled("USE_MCA"):
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_mca_args(args)
else:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
finetuning_args.use_mca = False
# Setup logging
if training_args.should_log: