mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	support rank0 logger
Former-commit-id: 84528eabe560091bfd866b6a0ca864085af7529b
This commit is contained in:
		
							parent
							
								
									ceb701c2d4
								
							
						
					
					
						commit
						093eda2ad6
					
				@ -5,6 +5,7 @@ API_PORT=
 | 
			
		||||
API_KEY=
 | 
			
		||||
API_MODEL_NAME=
 | 
			
		||||
FASTAPI_ROOT_PATH=
 | 
			
		||||
MAX_CONCURRENT=
 | 
			
		||||
# general
 | 
			
		||||
DISABLE_VERSION_CHECK=
 | 
			
		||||
FORCE_CHECK_IMPORTS=
 | 
			
		||||
 | 
			
		||||
@ -68,7 +68,7 @@ async def lifespan(app: "FastAPI", chat_model: "ChatModel"):  # collects GPU mem
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_app(chat_model: "ChatModel") -> "FastAPI":
 | 
			
		||||
    root_path = os.environ.get("FASTAPI_ROOT_PATH", "")
 | 
			
		||||
    root_path = os.getenv("FASTAPI_ROOT_PATH", "")
 | 
			
		||||
    app = FastAPI(lifespan=partial(lifespan, chat_model=chat_model), root_path=root_path)
 | 
			
		||||
    app.add_middleware(
 | 
			
		||||
        CORSMiddleware,
 | 
			
		||||
@ -77,7 +77,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
 | 
			
		||||
        allow_methods=["*"],
 | 
			
		||||
        allow_headers=["*"],
 | 
			
		||||
    )
 | 
			
		||||
    api_key = os.environ.get("API_KEY", None)
 | 
			
		||||
    api_key = os.getenv("API_KEY")
 | 
			
		||||
    security = HTTPBearer(auto_error=False)
 | 
			
		||||
 | 
			
		||||
    async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
 | 
			
		||||
@ -91,7 +91,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
 | 
			
		||||
        dependencies=[Depends(verify_api_key)],
 | 
			
		||||
    )
 | 
			
		||||
    async def list_models():
 | 
			
		||||
        model_card = ModelCard(id=os.environ.get("API_MODEL_NAME", "gpt-3.5-turbo"))
 | 
			
		||||
        model_card = ModelCard(id=os.getenv("API_MODEL_NAME", "gpt-3.5-turbo"))
 | 
			
		||||
        return ModelList(data=[model_card])
 | 
			
		||||
 | 
			
		||||
    @app.post(
 | 
			
		||||
@ -128,7 +128,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
 | 
			
		||||
def run_api() -> None:
 | 
			
		||||
    chat_model = ChatModel()
 | 
			
		||||
    app = create_app(chat_model)
 | 
			
		||||
    api_host = os.environ.get("API_HOST", "0.0.0.0")
 | 
			
		||||
    api_port = int(os.environ.get("API_PORT", "8000"))
 | 
			
		||||
    api_host = os.getenv("API_HOST", "0.0.0.0")
 | 
			
		||||
    api_port = int(os.getenv("API_PORT", "8000"))
 | 
			
		||||
    print(f"Visit http://localhost:{api_port}/docs for API document.")
 | 
			
		||||
    uvicorn.run(app, host=api_host, port=api_port)
 | 
			
		||||
 | 
			
		||||
@ -21,7 +21,7 @@ import uuid
 | 
			
		||||
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
 | 
			
		||||
 | 
			
		||||
from ..data import Role as DataRole
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
 | 
			
		||||
from .common import dictify, jsonify
 | 
			
		||||
from .protocol import (
 | 
			
		||||
@ -57,7 +57,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
ROLE_MAPPING = {
 | 
			
		||||
    Role.USER: DataRole.USER.value,
 | 
			
		||||
    Role.ASSISTANT: DataRole.ASSISTANT.value,
 | 
			
		||||
@ -70,7 +70,7 @@ ROLE_MAPPING = {
 | 
			
		||||
def _process_request(
 | 
			
		||||
    request: "ChatCompletionRequest",
 | 
			
		||||
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional[List["ImageInput"]]]:
 | 
			
		||||
    logger.info(f"==== request ====\n{json.dumps(dictify(request), indent=2, ensure_ascii=False)}")
 | 
			
		||||
    logger.info_rank0(f"==== request ====\n{json.dumps(dictify(request), indent=2, ensure_ascii=False)}")
 | 
			
		||||
 | 
			
		||||
    if len(request.messages) == 0:
 | 
			
		||||
        raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
 | 
			
		||||
 | 
			
		||||
@ -23,8 +23,8 @@ from transformers import GenerationConfig, TextIteratorStreamer
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..data import get_template_and_fix_tokenizer
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.misc import get_logits_processor
 | 
			
		||||
from ..model import load_model, load_tokenizer
 | 
			
		||||
from .base_engine import BaseEngine, Response
 | 
			
		||||
@ -39,7 +39,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class HuggingfaceEngine(BaseEngine):
 | 
			
		||||
@ -63,11 +63,11 @@ class HuggingfaceEngine(BaseEngine):
 | 
			
		||||
        try:
 | 
			
		||||
            asyncio.get_event_loop()
 | 
			
		||||
        except RuntimeError:
 | 
			
		||||
            logger.warning("There is no current event loop, creating a new one.")
 | 
			
		||||
            logger.warning_once("There is no current event loop, creating a new one.")
 | 
			
		||||
            loop = asyncio.new_event_loop()
 | 
			
		||||
            asyncio.set_event_loop(loop)
 | 
			
		||||
 | 
			
		||||
        self.semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", "1")))
 | 
			
		||||
        self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1")))
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _process_args(
 | 
			
		||||
@ -119,7 +119,7 @@ class HuggingfaceEngine(BaseEngine):
 | 
			
		||||
        stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
 | 
			
		||||
 | 
			
		||||
        if stop is not None:
 | 
			
		||||
            logger.warning("Stop parameter is not supported by the huggingface engine yet.")
 | 
			
		||||
            logger.warning_rank0("Stop parameter is not supported by the huggingface engine yet.")
 | 
			
		||||
 | 
			
		||||
        generating_args = generating_args.copy()
 | 
			
		||||
        generating_args.update(
 | 
			
		||||
 | 
			
		||||
@ -18,8 +18,8 @@ from typing import TYPE_CHECKING, Any, AsyncGenerator, AsyncIterator, Dict, List
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..data import get_template_and_fix_tokenizer
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import IMAGE_PLACEHOLDER
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.misc import get_device_count
 | 
			
		||||
from ..extras.packages import is_pillow_available, is_vllm_available
 | 
			
		||||
from ..model import load_config, load_tokenizer
 | 
			
		||||
@ -43,7 +43,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VllmEngine(BaseEngine):
 | 
			
		||||
@ -87,7 +87,7 @@ class VllmEngine(BaseEngine):
 | 
			
		||||
        if getattr(config, "is_yi_vl_derived_model", None):
 | 
			
		||||
            import vllm.model_executor.models.llava
 | 
			
		||||
 | 
			
		||||
            logger.info("Detected Yi-VL model, applying projector patch.")
 | 
			
		||||
            logger.info_rank0("Detected Yi-VL model, applying projector patch.")
 | 
			
		||||
            vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
 | 
			
		||||
 | 
			
		||||
        self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
 | 
			
		||||
 | 
			
		||||
@ -22,8 +22,8 @@ from . import launcher
 | 
			
		||||
from .api.app import run_api
 | 
			
		||||
from .chat.chat_model import run_chat
 | 
			
		||||
from .eval.evaluator import run_eval
 | 
			
		||||
from .extras import logging
 | 
			
		||||
from .extras.env import VERSION, print_env
 | 
			
		||||
from .extras.logging import get_logger
 | 
			
		||||
from .extras.misc import get_device_count
 | 
			
		||||
from .train.tuner import export_model, run_exp
 | 
			
		||||
from .webui.interface import run_web_demo, run_web_ui
 | 
			
		||||
@ -56,7 +56,7 @@ WELCOME = (
 | 
			
		||||
    + "-" * 58
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@unique
 | 
			
		||||
@ -90,7 +90,7 @@ def main():
 | 
			
		||||
        if force_torchrun or get_device_count() > 1:
 | 
			
		||||
            master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
 | 
			
		||||
            master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
 | 
			
		||||
            logger.info(f"Initializing distributed tasks at: {master_addr}:{master_port}")
 | 
			
		||||
            logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
 | 
			
		||||
            process = subprocess.run(
 | 
			
		||||
                (
 | 
			
		||||
                    "torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
 | 
			
		||||
 | 
			
		||||
@ -16,7 +16,7 @@ import os
 | 
			
		||||
from functools import partial
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from .data_utils import Role
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -29,7 +29,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from .parser import DatasetAttr
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _convert_images(
 | 
			
		||||
@ -167,7 +167,7 @@ def convert_sharegpt(
 | 
			
		||||
    broken_data = False
 | 
			
		||||
    for turn_idx, message in enumerate(messages):
 | 
			
		||||
        if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
 | 
			
		||||
            logger.warning(f"Invalid role tag in {messages}.")
 | 
			
		||||
            logger.warning_rank0(f"Invalid role tag in {messages}.")
 | 
			
		||||
            broken_data = True
 | 
			
		||||
 | 
			
		||||
        aligned_messages.append(
 | 
			
		||||
@ -177,7 +177,7 @@ def convert_sharegpt(
 | 
			
		||||
    if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
 | 
			
		||||
        dataset_attr.ranking and len(aligned_messages) % 2 == 0
 | 
			
		||||
    ):
 | 
			
		||||
        logger.warning(f"Invalid message count in {messages}.")
 | 
			
		||||
        logger.warning_rank0(f"Invalid message count in {messages}.")
 | 
			
		||||
        broken_data = True
 | 
			
		||||
 | 
			
		||||
    if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool):  # kto example
 | 
			
		||||
@ -198,7 +198,7 @@ def convert_sharegpt(
 | 
			
		||||
            chosen[dataset_attr.role_tag] not in accept_tags[-1]
 | 
			
		||||
            or rejected[dataset_attr.role_tag] not in accept_tags[-1]
 | 
			
		||||
        ):
 | 
			
		||||
            logger.warning(f"Invalid role tag in {[chosen, rejected]}.")
 | 
			
		||||
            logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
 | 
			
		||||
            broken_data = True
 | 
			
		||||
 | 
			
		||||
        prompt = aligned_messages
 | 
			
		||||
@ -211,7 +211,7 @@ def convert_sharegpt(
 | 
			
		||||
        response = aligned_messages[-1:]
 | 
			
		||||
 | 
			
		||||
    if broken_data:
 | 
			
		||||
        logger.warning("Skipping this abnormal example.")
 | 
			
		||||
        logger.warning_rank0("Skipping this abnormal example.")
 | 
			
		||||
        prompt, response = [], []
 | 
			
		||||
 | 
			
		||||
    convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
 | 
			
		||||
 | 
			
		||||
@ -17,7 +17,7 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, TypedDict
 | 
			
		||||
 | 
			
		||||
from datasets import DatasetDict, concatenate_datasets, interleave_datasets
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -26,7 +26,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import DataArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
 | 
			
		||||
@ -56,12 +56,12 @@ def merge_dataset(
 | 
			
		||||
        return all_datasets[0]
 | 
			
		||||
    elif data_args.mix_strategy == "concat":
 | 
			
		||||
        if data_args.streaming:
 | 
			
		||||
            logger.warning("The samples between different datasets will not be mixed in streaming mode.")
 | 
			
		||||
            logger.warning_once("The samples between different datasets will not be mixed in streaming mode.")
 | 
			
		||||
 | 
			
		||||
        return concatenate_datasets(all_datasets)
 | 
			
		||||
    elif data_args.mix_strategy.startswith("interleave"):
 | 
			
		||||
        if not data_args.streaming:
 | 
			
		||||
            logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
 | 
			
		||||
            logger.warning_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
 | 
			
		||||
 | 
			
		||||
        return interleave_datasets(
 | 
			
		||||
            datasets=all_datasets,
 | 
			
		||||
 | 
			
		||||
@ -20,8 +20,8 @@ import numpy as np
 | 
			
		||||
from datasets import DatasetDict, load_dataset, load_from_disk
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import FILEEXT2TYPE
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.misc import has_tokenized_data
 | 
			
		||||
from .aligner import align_dataset
 | 
			
		||||
from .data_utils import merge_dataset, split_dataset
 | 
			
		||||
@ -39,7 +39,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from .template import Template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _load_single_dataset(
 | 
			
		||||
@ -51,7 +51,7 @@ def _load_single_dataset(
 | 
			
		||||
    r"""
 | 
			
		||||
    Loads a single dataset and aligns it to the standard format.
 | 
			
		||||
    """
 | 
			
		||||
    logger.info(f"Loading dataset {dataset_attr}...")
 | 
			
		||||
    logger.info_rank0(f"Loading dataset {dataset_attr}...")
 | 
			
		||||
    data_path, data_name, data_dir, data_files = None, None, None, None
 | 
			
		||||
    if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
 | 
			
		||||
        data_path = dataset_attr.dataset_name
 | 
			
		||||
@ -141,7 +141,7 @@ def _load_single_dataset(
 | 
			
		||||
 | 
			
		||||
        assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
 | 
			
		||||
        dataset = dataset.select(indexes)
 | 
			
		||||
        logger.info(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
 | 
			
		||||
        logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
 | 
			
		||||
 | 
			
		||||
    if data_args.max_samples is not None:  # truncate dataset
 | 
			
		||||
        max_samples = min(data_args.max_samples, len(dataset))
 | 
			
		||||
@ -237,9 +237,9 @@ def get_dataset(
 | 
			
		||||
    # Load tokenized dataset
 | 
			
		||||
    if data_args.tokenized_path is not None:
 | 
			
		||||
        if has_tokenized_data(data_args.tokenized_path):
 | 
			
		||||
            logger.warning("Loading dataset from disk will ignore other data arguments.")
 | 
			
		||||
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
 | 
			
		||||
            dataset_dict: "DatasetDict" = load_from_disk(data_args.tokenized_path)
 | 
			
		||||
            logger.info(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
 | 
			
		||||
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
 | 
			
		||||
 | 
			
		||||
            dataset_module: Dict[str, "Dataset"] = {}
 | 
			
		||||
            if "train" in dataset_dict:
 | 
			
		||||
@ -290,8 +290,8 @@ def get_dataset(
 | 
			
		||||
        if data_args.tokenized_path is not None:
 | 
			
		||||
            if training_args.should_save:
 | 
			
		||||
                dataset_dict.save_to_disk(data_args.tokenized_path)
 | 
			
		||||
                logger.info(f"Tokenized dataset saved at {data_args.tokenized_path}.")
 | 
			
		||||
                logger.info(f"Please restart the training with `tokenized_path: {data_args.tokenized_path}`.")
 | 
			
		||||
                logger.info_rank0(f"Tokenized dataset saved at {data_args.tokenized_path}.")
 | 
			
		||||
                logger.info_rank0(f"Please restart the training with `tokenized_path: {data_args.tokenized_path}`.")
 | 
			
		||||
 | 
			
		||||
            sys.exit(0)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -15,8 +15,8 @@
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from .processor_utils import infer_seqlen
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..template import Template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _encode_feedback_example(
 | 
			
		||||
@ -94,7 +94,9 @@ def preprocess_feedback_dataset(
 | 
			
		||||
    model_inputs = defaultdict(list)
 | 
			
		||||
    for i in range(len(examples["_prompt"])):
 | 
			
		||||
        if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
 | 
			
		||||
            logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
 | 
			
		||||
            )
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
 | 
			
		||||
@ -123,6 +125,6 @@ def preprocess_feedback_dataset(
 | 
			
		||||
    desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
 | 
			
		||||
    undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
 | 
			
		||||
    if desirable_num == 0 or undesirable_num == 0:
 | 
			
		||||
        logger.warning("Your dataset only has one preference type.")
 | 
			
		||||
        logger.warning_rank0("Your dataset only has one preference type.")
 | 
			
		||||
 | 
			
		||||
    return model_inputs
 | 
			
		||||
 | 
			
		||||
@ -15,8 +15,8 @@
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from .processor_utils import infer_seqlen
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..template import Template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _encode_pairwise_example(
 | 
			
		||||
@ -77,7 +77,9 @@ def preprocess_pairwise_dataset(
 | 
			
		||||
    model_inputs = defaultdict(list)
 | 
			
		||||
    for i in range(len(examples["_prompt"])):
 | 
			
		||||
        if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
 | 
			
		||||
            logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
 | 
			
		||||
            )
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
 | 
			
		||||
 | 
			
		||||
@ -15,8 +15,8 @@
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from .processor_utils import greedy_knapsack, infer_seqlen
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..template import Template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _encode_supervised_example(
 | 
			
		||||
@ -99,7 +99,9 @@ def preprocess_supervised_dataset(
 | 
			
		||||
    model_inputs = defaultdict(list)
 | 
			
		||||
    for i in range(len(examples["_prompt"])):
 | 
			
		||||
        if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
 | 
			
		||||
            logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
 | 
			
		||||
            )
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        input_ids, labels = _encode_supervised_example(
 | 
			
		||||
@ -141,7 +143,9 @@ def preprocess_packed_supervised_dataset(
 | 
			
		||||
    length2indexes = defaultdict(list)
 | 
			
		||||
    for i in range(len(examples["_prompt"])):
 | 
			
		||||
        if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
 | 
			
		||||
            logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
 | 
			
		||||
            )
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        input_ids, labels = _encode_supervised_example(
 | 
			
		||||
@ -160,7 +164,7 @@ def preprocess_packed_supervised_dataset(
 | 
			
		||||
        )
 | 
			
		||||
        length = len(input_ids)
 | 
			
		||||
        if length > data_args.cutoff_len:
 | 
			
		||||
            logger.warning(f"Dropped lengthy example with length {length} > {data_args.cutoff_len}.")
 | 
			
		||||
            logger.warning_rank0(f"Dropped lengthy example with length {length} > {data_args.cutoff_len}.")
 | 
			
		||||
        else:
 | 
			
		||||
            lengths.append(length)
 | 
			
		||||
            length2indexes[length].append(valid_num)
 | 
			
		||||
 | 
			
		||||
@ -15,7 +15,7 @@
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ..data_utils import Role
 | 
			
		||||
from .processor_utils import infer_seqlen
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..template import Template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _encode_unsupervised_example(
 | 
			
		||||
@ -71,7 +71,9 @@ def preprocess_unsupervised_dataset(
 | 
			
		||||
    model_inputs = defaultdict(list)
 | 
			
		||||
    for i in range(len(examples["_prompt"])):
 | 
			
		||||
        if len(examples["_prompt"][i]) % 2 != 1:
 | 
			
		||||
            logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
 | 
			
		||||
            )
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        input_ids, labels = _encode_unsupervised_example(
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,7 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from .data_utils import Role
 | 
			
		||||
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
 | 
			
		||||
from .mm_plugin import get_mm_plugin
 | 
			
		||||
@ -32,7 +32,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from .mm_plugin import BasePlugin
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
@ -275,12 +275,12 @@ def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str)
 | 
			
		||||
    num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token})
 | 
			
		||||
 | 
			
		||||
    if is_added:
 | 
			
		||||
        logger.info(f"Add eos token: {tokenizer.eos_token}")
 | 
			
		||||
        logger.info_rank0(f"Add eos token: {tokenizer.eos_token}")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info(f"Replace eos token: {tokenizer.eos_token}")
 | 
			
		||||
        logger.info_rank0(f"Replace eos token: {tokenizer.eos_token}")
 | 
			
		||||
 | 
			
		||||
    if num_added_tokens > 0:
 | 
			
		||||
        logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
 | 
			
		||||
        logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _jinja_escape(content: str) -> str:
 | 
			
		||||
@ -370,7 +370,7 @@ def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args:
 | 
			
		||||
        raise ValueError("Current template does not support `train_on_prompt`.")
 | 
			
		||||
 | 
			
		||||
    if data_args.tool_format is not None:
 | 
			
		||||
        logger.info(f"Using tool format: {data_args.tool_format}.")
 | 
			
		||||
        logger.info_rank0(f"Using tool format: {data_args.tool_format}.")
 | 
			
		||||
        eos_slots = [] if template.efficient_eos else [{"eos_token"}]
 | 
			
		||||
        template.format_function = FunctionFormatter(slots=eos_slots, tool_format=data_args.tool_format)
 | 
			
		||||
        template.format_tools = ToolFormatter(tool_format=data_args.tool_format)
 | 
			
		||||
@ -388,21 +388,21 @@ def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args:
 | 
			
		||||
 | 
			
		||||
    if tokenizer.pad_token_id is None:
 | 
			
		||||
        tokenizer.pad_token = tokenizer.eos_token
 | 
			
		||||
        logger.info(f"Add pad token: {tokenizer.pad_token}")
 | 
			
		||||
        logger.info_rank0(f"Add pad token: {tokenizer.pad_token}")
 | 
			
		||||
 | 
			
		||||
    if stop_words:
 | 
			
		||||
        num_added_tokens = tokenizer.add_special_tokens(
 | 
			
		||||
            dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
 | 
			
		||||
        )
 | 
			
		||||
        logger.info("Add {} to stop words.".format(",".join(stop_words)))
 | 
			
		||||
        logger.info_rank0("Add {} to stop words.".format(",".join(stop_words)))
 | 
			
		||||
        if num_added_tokens > 0:
 | 
			
		||||
            logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
 | 
			
		||||
            logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")
 | 
			
		||||
 | 
			
		||||
    if tokenizer.chat_template is None or template.replace_jinja_template:
 | 
			
		||||
        try:
 | 
			
		||||
            tokenizer.chat_template = _get_jinja_template(template, tokenizer)
 | 
			
		||||
        except ValueError as e:
 | 
			
		||||
            logger.info(f"Cannot add this chat template to tokenizer: {e}.")
 | 
			
		||||
            logger.info_rank0(f"Cannot add this chat template to tokenizer: {e}.")
 | 
			
		||||
 | 
			
		||||
    return template
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,7 @@ import os
 | 
			
		||||
import sys
 | 
			
		||||
import threading
 | 
			
		||||
from concurrent.futures import ThreadPoolExecutor
 | 
			
		||||
from functools import lru_cache
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
from .constants import RUNNING_LOG
 | 
			
		||||
@ -37,12 +38,11 @@ class LoggerHandler(logging.Handler):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, output_dir: str) -> None:
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        formatter = logging.Formatter(
 | 
			
		||||
            fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
 | 
			
		||||
        self._formatter = logging.Formatter(
 | 
			
		||||
            fmt="[%(levelname)s|%(asctime)s] %(filename)s:%(lineno)s >> %(message)s",
 | 
			
		||||
            datefmt="%Y-%m-%d %H:%M:%S",
 | 
			
		||||
        )
 | 
			
		||||
        self.setLevel(logging.INFO)
 | 
			
		||||
        self.setFormatter(formatter)
 | 
			
		||||
 | 
			
		||||
        os.makedirs(output_dir, exist_ok=True)
 | 
			
		||||
        self.running_log = os.path.join(output_dir, RUNNING_LOG)
 | 
			
		||||
        if os.path.exists(self.running_log):
 | 
			
		||||
@ -58,7 +58,7 @@ class LoggerHandler(logging.Handler):
 | 
			
		||||
        if record.name == "httpx":
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        log_entry = self.format(record)
 | 
			
		||||
        log_entry = self._formatter.format(record)
 | 
			
		||||
        self.thread_pool.submit(self._write_log, log_entry)
 | 
			
		||||
 | 
			
		||||
    def close(self) -> None:
 | 
			
		||||
@ -66,6 +66,21 @@ class LoggerHandler(logging.Handler):
 | 
			
		||||
        return super().close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class _Logger(logging.Logger):
 | 
			
		||||
    r"""
 | 
			
		||||
    A logger that supports info_rank0 and warning_once.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def info_rank0(self, *args, **kwargs) -> None:
 | 
			
		||||
        self.info(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def warning_rank0(self, *args, **kwargs) -> None:
 | 
			
		||||
        self.warning(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def warning_once(self, *args, **kwargs) -> None:
 | 
			
		||||
        self.warning(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_default_logging_level() -> "logging._Level":
 | 
			
		||||
    r"""
 | 
			
		||||
    Returns the default logging level.
 | 
			
		||||
@ -84,7 +99,7 @@ def _get_library_name() -> str:
 | 
			
		||||
    return __name__.split(".")[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_library_root_logger() -> "logging.Logger":
 | 
			
		||||
def _get_library_root_logger() -> "_Logger":
 | 
			
		||||
    return logging.getLogger(_get_library_name())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -95,12 +110,12 @@ def _configure_library_root_logger() -> None:
 | 
			
		||||
    global _default_handler
 | 
			
		||||
 | 
			
		||||
    with _thread_lock:
 | 
			
		||||
        if _default_handler:
 | 
			
		||||
        if _default_handler:  # already configured
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        formatter = logging.Formatter(
 | 
			
		||||
            fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
 | 
			
		||||
            datefmt="%m/%d/%Y %H:%M:%S",
 | 
			
		||||
            fmt="[%(levelname)s|%(asctime)s] %(name)s:%(lineno)s >> %(message)s",
 | 
			
		||||
            datefmt="%Y-%m-%d %H:%M:%S",
 | 
			
		||||
        )
 | 
			
		||||
        _default_handler = logging.StreamHandler(sys.stdout)
 | 
			
		||||
        _default_handler.setFormatter(formatter)
 | 
			
		||||
@ -110,7 +125,7 @@ def _configure_library_root_logger() -> None:
 | 
			
		||||
        library_root_logger.propagate = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_logger(name: Optional[str] = None) -> "logging.Logger":
 | 
			
		||||
def get_logger(name: Optional[str] = None) -> "_Logger":
 | 
			
		||||
    r"""
 | 
			
		||||
    Returns a logger with the specified name. It it not supposed to be accessed externally.
 | 
			
		||||
    """
 | 
			
		||||
@ -119,3 +134,40 @@ def get_logger(name: Optional[str] = None) -> "logging.Logger":
 | 
			
		||||
 | 
			
		||||
    _configure_library_root_logger()
 | 
			
		||||
    return logging.getLogger(name)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def add_handler(handler: "logging.Handler") -> None:
 | 
			
		||||
    r"""
 | 
			
		||||
    Adds a handler to the root logger.
 | 
			
		||||
    """
 | 
			
		||||
    _configure_library_root_logger()
 | 
			
		||||
    _get_library_root_logger().addHandler(handler)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def remove_handler(handler: logging.Handler) -> None:
 | 
			
		||||
    r"""
 | 
			
		||||
    Removes a handler to the root logger.
 | 
			
		||||
    """
 | 
			
		||||
    _configure_library_root_logger()
 | 
			
		||||
    _get_library_root_logger().removeHandler(handler)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def info_rank0(self: "logging.Logger", *args, **kwargs) -> None:
 | 
			
		||||
    if int(os.getenv("LOCAL_RANK", "0")) == 0:
 | 
			
		||||
        self.info(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def warning_rank0(self: "logging.Logger", *args, **kwargs) -> None:
 | 
			
		||||
    if int(os.getenv("LOCAL_RANK", "0")) == 0:
 | 
			
		||||
        self.warning(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@lru_cache(None)
 | 
			
		||||
def warning_once(self: "logging.Logger", *args, **kwargs) -> None:
 | 
			
		||||
    if int(os.getenv("LOCAL_RANK", "0")) == 0:
 | 
			
		||||
        self.warning(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logging.Logger.info_rank0 = info_rank0
 | 
			
		||||
logging.Logger.warning_rank0 = warning_rank0
 | 
			
		||||
logging.Logger.warning_once = warning_once
 | 
			
		||||
 | 
			
		||||
@ -32,7 +32,7 @@ from transformers.utils import (
 | 
			
		||||
)
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from .logging import get_logger
 | 
			
		||||
from . import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
 | 
			
		||||
@ -48,7 +48,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AverageMeter:
 | 
			
		||||
@ -76,8 +76,8 @@ def check_dependencies() -> None:
 | 
			
		||||
    r"""
 | 
			
		||||
    Checks the version of the required packages.
 | 
			
		||||
    """
 | 
			
		||||
    if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
 | 
			
		||||
        logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
 | 
			
		||||
    if os.getenv("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
 | 
			
		||||
        logger.warning_once("Version checking has been disabled, may lead to unexpected behaviors.")
 | 
			
		||||
    else:
 | 
			
		||||
        require_version("transformers>=4.41.2,<=4.46.1", "To fix: pip install transformers>=4.41.2,<=4.46.1")
 | 
			
		||||
        require_version("datasets>=2.16.0,<=3.0.2", "To fix: pip install datasets>=2.16.0,<=3.0.2")
 | 
			
		||||
 | 
			
		||||
@ -19,7 +19,7 @@ from typing import Any, Dict, List
 | 
			
		||||
 | 
			
		||||
from transformers.trainer import TRAINER_STATE_NAME
 | 
			
		||||
 | 
			
		||||
from .logging import get_logger
 | 
			
		||||
from . import logging
 | 
			
		||||
from .packages import is_matplotlib_available
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ if is_matplotlib_available():
 | 
			
		||||
    import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def smooth(scalars: List[float]) -> List[float]:
 | 
			
		||||
@ -86,7 +86,7 @@ def plot_loss(save_dictionary: str, keys: List[str] = ["loss"]) -> None:
 | 
			
		||||
                metrics.append(data["log_history"][i][key])
 | 
			
		||||
 | 
			
		||||
        if len(metrics) == 0:
 | 
			
		||||
            logger.warning(f"No metric {key} to plot.")
 | 
			
		||||
            logger.warning_rank0(f"No metric {key} to plot.")
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        plt.figure()
 | 
			
		||||
 | 
			
		||||
@ -15,7 +15,6 @@
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
from typing import Any, Dict, Optional, Tuple
 | 
			
		||||
@ -29,8 +28,8 @@ from transformers.training_args import ParallelMode
 | 
			
		||||
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import CHECKPOINT_NAMES
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.misc import check_dependencies, get_current_device
 | 
			
		||||
from .data_args import DataArguments
 | 
			
		||||
from .evaluation_args import EvaluationArguments
 | 
			
		||||
@ -39,7 +38,7 @@ from .generating_args import GeneratingArguments
 | 
			
		||||
from .model_args import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
check_dependencies()
 | 
			
		||||
@ -73,8 +72,8 @@ def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = Non
 | 
			
		||||
    return (*parsed_args,)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
 | 
			
		||||
    transformers.utils.logging.set_verbosity(log_level)
 | 
			
		||||
def _set_transformers_logging() -> None:
 | 
			
		||||
    transformers.utils.logging.set_verbosity_info()
 | 
			
		||||
    transformers.utils.logging.enable_default_handler()
 | 
			
		||||
    transformers.utils.logging.enable_explicit_format()
 | 
			
		||||
 | 
			
		||||
@ -104,7 +103,7 @@ def _verify_model_args(
 | 
			
		||||
            raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
 | 
			
		||||
 | 
			
		||||
    if data_args.template == "yi" and model_args.use_fast_tokenizer:
 | 
			
		||||
        logger.warning("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
 | 
			
		||||
        logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
 | 
			
		||||
        model_args.use_fast_tokenizer = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -261,7 +260,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
 | 
			
		||||
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
 | 
			
		||||
 | 
			
		||||
    if data_args.neat_packing and not data_args.packing:
 | 
			
		||||
        logger.warning("`neat_packing` requires `packing` is True. Change `packing` to True.")
 | 
			
		||||
        logger.warning_rank0("`neat_packing` requires `packing` is True. Change `packing` to True.")
 | 
			
		||||
        data_args.packing = True
 | 
			
		||||
 | 
			
		||||
    _verify_model_args(model_args, data_args, finetuning_args)
 | 
			
		||||
@ -274,22 +273,26 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
 | 
			
		||||
        and model_args.resize_vocab
 | 
			
		||||
        and finetuning_args.additional_target is None
 | 
			
		||||
    ):
 | 
			
		||||
        logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.")
 | 
			
		||||
        logger.warning_rank0(
 | 
			
		||||
            "Remember to add embedding layers to `additional_target` to make the added tokens trainable."
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
 | 
			
		||||
        logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
 | 
			
		||||
        logger.warning_rank0("We recommend enable `upcast_layernorm` in quantized training.")
 | 
			
		||||
 | 
			
		||||
    if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
 | 
			
		||||
        logger.warning("We recommend enable mixed precision training.")
 | 
			
		||||
        logger.warning_rank0("We recommend enable mixed precision training.")
 | 
			
		||||
 | 
			
		||||
    if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16:
 | 
			
		||||
        logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.")
 | 
			
		||||
        logger.warning_rank0(
 | 
			
		||||
            "Using GaLore with mixed precision training may significantly increases GPU memory usage."
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if (not training_args.do_train) and model_args.quantization_bit is not None:
 | 
			
		||||
        logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
 | 
			
		||||
        logger.warning_rank0("Evaluating model in 4/8-bit mode may cause lower scores.")
 | 
			
		||||
 | 
			
		||||
    if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
 | 
			
		||||
        logger.warning("Specify `ref_model` for computing rewards at evaluation.")
 | 
			
		||||
        logger.warning_rank0("Specify `ref_model` for computing rewards at evaluation.")
 | 
			
		||||
 | 
			
		||||
    # Post-process training arguments
 | 
			
		||||
    if (
 | 
			
		||||
@ -297,13 +300,13 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
 | 
			
		||||
        and training_args.ddp_find_unused_parameters is None
 | 
			
		||||
        and finetuning_args.finetuning_type == "lora"
 | 
			
		||||
    ):
 | 
			
		||||
        logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
 | 
			
		||||
        logger.warning_rank0("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
 | 
			
		||||
        training_args.ddp_find_unused_parameters = False
 | 
			
		||||
 | 
			
		||||
    if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
 | 
			
		||||
        can_resume_from_checkpoint = False
 | 
			
		||||
        if training_args.resume_from_checkpoint is not None:
 | 
			
		||||
            logger.warning("Cannot resume from checkpoint in current stage.")
 | 
			
		||||
            logger.warning_rank0("Cannot resume from checkpoint in current stage.")
 | 
			
		||||
            training_args.resume_from_checkpoint = None
 | 
			
		||||
    else:
 | 
			
		||||
        can_resume_from_checkpoint = True
 | 
			
		||||
@ -323,15 +326,15 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
 | 
			
		||||
 | 
			
		||||
        if last_checkpoint is not None:
 | 
			
		||||
            training_args.resume_from_checkpoint = last_checkpoint
 | 
			
		||||
            logger.info(f"Resuming training from {training_args.resume_from_checkpoint}.")
 | 
			
		||||
            logger.info("Change `output_dir` or use `overwrite_output_dir` to avoid.")
 | 
			
		||||
            logger.info_rank0(f"Resuming training from {training_args.resume_from_checkpoint}.")
 | 
			
		||||
            logger.info_rank0("Change `output_dir` or use `overwrite_output_dir` to avoid.")
 | 
			
		||||
 | 
			
		||||
    if (
 | 
			
		||||
        finetuning_args.stage in ["rm", "ppo"]
 | 
			
		||||
        and finetuning_args.finetuning_type == "lora"
 | 
			
		||||
        and training_args.resume_from_checkpoint is not None
 | 
			
		||||
    ):
 | 
			
		||||
        logger.warning(
 | 
			
		||||
        logger.warning_rank0(
 | 
			
		||||
            "Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
 | 
			
		||||
                training_args.resume_from_checkpoint
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
 | 
			
		||||
from transformers.integrations import is_deepspeed_zero3_enabled
 | 
			
		||||
from transformers.modeling_utils import is_fsdp_enabled
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
 | 
			
		||||
from .model_utils.quantization import QuantizationMethod
 | 
			
		||||
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
 | 
			
		||||
@ -33,7 +33,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _setup_full_tuning(
 | 
			
		||||
@ -45,7 +45,7 @@ def _setup_full_tuning(
 | 
			
		||||
    if not is_trainable:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    logger.info("Fine-tuning method: Full")
 | 
			
		||||
    logger.info_rank0("Fine-tuning method: Full")
 | 
			
		||||
    forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
 | 
			
		||||
    for name, param in model.named_parameters():
 | 
			
		||||
        if not any(forbidden_module in name for forbidden_module in forbidden_modules):
 | 
			
		||||
@ -64,7 +64,7 @@ def _setup_freeze_tuning(
 | 
			
		||||
    if not is_trainable:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    logger.info("Fine-tuning method: Freeze")
 | 
			
		||||
    logger.info_rank0("Fine-tuning method: Freeze")
 | 
			
		||||
    if hasattr(model.config, "text_config"):  # composite models
 | 
			
		||||
        config = getattr(model.config, "text_config")
 | 
			
		||||
    else:
 | 
			
		||||
@ -133,7 +133,7 @@ def _setup_freeze_tuning(
 | 
			
		||||
        else:
 | 
			
		||||
            param.requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
    logger.info("Set trainable layers: {}".format(",".join(trainable_layers)))
 | 
			
		||||
    logger.info_rank0("Set trainable layers: {}".format(",".join(trainable_layers)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _setup_lora_tuning(
 | 
			
		||||
@ -145,7 +145,7 @@ def _setup_lora_tuning(
 | 
			
		||||
    cast_trainable_params_to_fp32: bool,
 | 
			
		||||
) -> "PeftModel":
 | 
			
		||||
    if is_trainable:
 | 
			
		||||
        logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
 | 
			
		||||
        logger.info_rank0("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
 | 
			
		||||
 | 
			
		||||
    adapter_to_resume = None
 | 
			
		||||
 | 
			
		||||
@ -182,7 +182,7 @@ def _setup_lora_tuning(
 | 
			
		||||
            model = model.merge_and_unload()
 | 
			
		||||
 | 
			
		||||
        if len(adapter_to_merge) > 0:
 | 
			
		||||
            logger.info(f"Merged {len(adapter_to_merge)} adapter(s).")
 | 
			
		||||
            logger.info_rank0(f"Merged {len(adapter_to_merge)} adapter(s).")
 | 
			
		||||
 | 
			
		||||
        if adapter_to_resume is not None:  # resume lora training
 | 
			
		||||
            if model_args.use_unsloth:
 | 
			
		||||
@ -190,7 +190,7 @@ def _setup_lora_tuning(
 | 
			
		||||
            else:
 | 
			
		||||
                model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)
 | 
			
		||||
 | 
			
		||||
        logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
 | 
			
		||||
        logger.info_rank0("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
 | 
			
		||||
 | 
			
		||||
    if is_trainable and adapter_to_resume is None:  # create new lora weights while training
 | 
			
		||||
        if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
 | 
			
		||||
@ -219,7 +219,7 @@ def _setup_lora_tuning(
 | 
			
		||||
                    module_names.add(name.split(".")[-1])
 | 
			
		||||
 | 
			
		||||
            finetuning_args.additional_target = module_names
 | 
			
		||||
            logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
 | 
			
		||||
            logger.warning_rank0("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
 | 
			
		||||
 | 
			
		||||
        peft_kwargs = {
 | 
			
		||||
            "r": finetuning_args.lora_rank,
 | 
			
		||||
@ -236,10 +236,10 @@ def _setup_lora_tuning(
 | 
			
		||||
        else:
 | 
			
		||||
            if finetuning_args.pissa_init:
 | 
			
		||||
                if finetuning_args.pissa_iter == -1:
 | 
			
		||||
                    logger.info("Using PiSSA initialization.")
 | 
			
		||||
                    logger.info_rank0("Using PiSSA initialization.")
 | 
			
		||||
                    peft_kwargs["init_lora_weights"] = "pissa"
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.info(f"Using PiSSA initialization with FSVD steps {finetuning_args.pissa_iter}.")
 | 
			
		||||
                    logger.info_rank0(f"Using PiSSA initialization with FSVD steps {finetuning_args.pissa_iter}.")
 | 
			
		||||
                    peft_kwargs["init_lora_weights"] = f"pissa_niter_{finetuning_args.pissa_iter}"
 | 
			
		||||
 | 
			
		||||
            lora_config = LoraConfig(
 | 
			
		||||
@ -284,11 +284,11 @@ def init_adapter(
 | 
			
		||||
    if not is_trainable:
 | 
			
		||||
        pass
 | 
			
		||||
    elif finetuning_args.pure_bf16 or finetuning_args.use_badam:
 | 
			
		||||
        logger.info("Pure bf16 / BAdam detected, remaining trainable params in half precision.")
 | 
			
		||||
        logger.info_rank0("Pure bf16 / BAdam detected, remaining trainable params in half precision.")
 | 
			
		||||
    elif model_args.quantization_bit is None and (is_deepspeed_zero3_enabled() or is_fsdp_enabled()):
 | 
			
		||||
        logger.info("ZeRO3 / FSDP detected, remaining trainable params in float32.")
 | 
			
		||||
        logger.info_rank0("ZeRO3 / FSDP detected, remaining trainable params in float32.")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info("Upcasting trainable params to float32.")
 | 
			
		||||
        logger.info_rank0("Upcasting trainable params to float32.")
 | 
			
		||||
        cast_trainable_params_to_fp32 = True
 | 
			
		||||
 | 
			
		||||
    if finetuning_args.finetuning_type == "full":
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,7 @@ import torch
 | 
			
		||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer
 | 
			
		||||
from trl import AutoModelForCausalLMWithValueHead
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
 | 
			
		||||
from .adapter import init_adapter
 | 
			
		||||
from .model_utils.liger_kernel import apply_liger_kernel
 | 
			
		||||
@ -35,7 +35,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TokenizerModule(TypedDict):
 | 
			
		||||
@ -90,10 +90,10 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
 | 
			
		||||
            dict(additional_special_tokens=model_args.new_special_tokens),
 | 
			
		||||
            replace_additional_special_tokens=False,
 | 
			
		||||
        )
 | 
			
		||||
        logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
 | 
			
		||||
        logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
 | 
			
		||||
        if num_added_tokens > 0 and not model_args.resize_vocab:
 | 
			
		||||
            model_args.resize_vocab = True
 | 
			
		||||
            logger.warning("New tokens have been added, changed `resize_vocab` to True.")
 | 
			
		||||
            logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
 | 
			
		||||
 | 
			
		||||
    patch_tokenizer(tokenizer)
 | 
			
		||||
    try:
 | 
			
		||||
@ -180,7 +180,7 @@ def load_model(
 | 
			
		||||
        vhead_params = load_valuehead_params(vhead_path, model_args)
 | 
			
		||||
        if vhead_params is not None:
 | 
			
		||||
            model.load_state_dict(vhead_params, strict=False)
 | 
			
		||||
            logger.info(f"Loaded valuehead from checkpoint: {vhead_path}")
 | 
			
		||||
            logger.info_rank0(f"Loaded valuehead from checkpoint: {vhead_path}")
 | 
			
		||||
 | 
			
		||||
    if not is_trainable:
 | 
			
		||||
        model.requires_grad_(False)
 | 
			
		||||
@ -200,7 +200,7 @@ def load_model(
 | 
			
		||||
    else:
 | 
			
		||||
        param_stats = f"all params: {all_param:,}"
 | 
			
		||||
 | 
			
		||||
    logger.info(param_stats)
 | 
			
		||||
    logger.info_rank0(param_stats)
 | 
			
		||||
 | 
			
		||||
    if model_args.print_param_status:
 | 
			
		||||
        for name, param in model.named_parameters():
 | 
			
		||||
 | 
			
		||||
@ -17,7 +17,7 @@ from typing import TYPE_CHECKING
 | 
			
		||||
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -26,7 +26,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def configure_attn_implementation(
 | 
			
		||||
@ -38,13 +38,15 @@ def configure_attn_implementation(
 | 
			
		||||
                require_version("transformers>=4.42.4", "To fix: pip install transformers>=4.42.4")
 | 
			
		||||
                require_version("flash_attn>=2.6.3", "To fix: pip install flash_attn>=2.6.3")
 | 
			
		||||
                if model_args.flash_attn != "fa2":
 | 
			
		||||
                    logger.warning("Gemma-2 should use flash attention 2, change `flash_attn` to fa2.")
 | 
			
		||||
                    logger.warning_rank0("Gemma-2 should use flash attention 2, change `flash_attn` to fa2.")
 | 
			
		||||
                    model_args.flash_attn = "fa2"
 | 
			
		||||
            else:
 | 
			
		||||
                logger.warning("FlashAttention-2 is not installed, use eager attention.")
 | 
			
		||||
                logger.warning_rank0("FlashAttention-2 is not installed, use eager attention.")
 | 
			
		||||
                model_args.flash_attn = "disabled"
 | 
			
		||||
        elif model_args.flash_attn == "sdpa":
 | 
			
		||||
            logger.warning("Gemma-2 should use soft-capping attention, while the SDPA attention does not support it.")
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Gemma-2 should use soft-capping attention, while the SDPA attention does not support it."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    if model_args.flash_attn == "auto":
 | 
			
		||||
        return
 | 
			
		||||
@ -54,13 +56,13 @@ def configure_attn_implementation(
 | 
			
		||||
 | 
			
		||||
    elif model_args.flash_attn == "sdpa":
 | 
			
		||||
        if not is_torch_sdpa_available():
 | 
			
		||||
            logger.warning("torch>=2.1.1 is required for SDPA attention.")
 | 
			
		||||
            logger.warning_rank0("torch>=2.1.1 is required for SDPA attention.")
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        requested_attn_implementation = "sdpa"
 | 
			
		||||
    elif model_args.flash_attn == "fa2":
 | 
			
		||||
        if not is_flash_attn_2_available():
 | 
			
		||||
            logger.warning("FlashAttention-2 is not installed.")
 | 
			
		||||
            logger.warning_rank0("FlashAttention-2 is not installed.")
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        requested_attn_implementation = "flash_attention_2"
 | 
			
		||||
@ -80,8 +82,8 @@ def print_attn_implementation(config: "PretrainedConfig") -> None:
 | 
			
		||||
        attn_implementation = getattr(config, "_attn_implementation", None)
 | 
			
		||||
 | 
			
		||||
    if attn_implementation == "flash_attention_2":
 | 
			
		||||
        logger.info("Using FlashAttention-2 for faster training and inference.")
 | 
			
		||||
        logger.info_rank0("Using FlashAttention-2 for faster training and inference.")
 | 
			
		||||
    elif attn_implementation == "sdpa":
 | 
			
		||||
        logger.info("Using torch SDPA for faster training and inference.")
 | 
			
		||||
        logger.info_rank0("Using torch SDPA for faster training and inference.")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info("Using vanilla attention implementation.")
 | 
			
		||||
        logger.info_rank0("Using vanilla attention implementation.")
 | 
			
		||||
 | 
			
		||||
@ -25,8 +25,8 @@ from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import LAYERNORM_NAMES
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -35,7 +35,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_unsloth_gradient_checkpointing_func() -> Callable:
 | 
			
		||||
@ -122,7 +122,7 @@ def _gradient_checkpointing_enable(
 | 
			
		||||
    if "value" in inspect.signature(self._set_gradient_checkpointing).parameters:  # old GC format
 | 
			
		||||
        self.apply(partial(self._set_gradient_checkpointing, value=True))
 | 
			
		||||
        self.enable_input_require_grads()
 | 
			
		||||
        logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
 | 
			
		||||
        logger.warning_once("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
 | 
			
		||||
    else:  # have already enabled input require gradients
 | 
			
		||||
        self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
 | 
			
		||||
 | 
			
		||||
@ -141,14 +141,14 @@ def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArgum
 | 
			
		||||
        (3) add the upcasting of the lm_head in fp32
 | 
			
		||||
    """
 | 
			
		||||
    if model_args.upcast_layernorm:
 | 
			
		||||
        logger.info("Upcasting layernorm weights in float32.")
 | 
			
		||||
        logger.info_rank0("Upcasting layernorm weights in float32.")
 | 
			
		||||
        for name, param in model.named_parameters():
 | 
			
		||||
            if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
 | 
			
		||||
                param.data = param.data.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
    if not model_args.disable_gradient_checkpointing:
 | 
			
		||||
        if not getattr(model, "supports_gradient_checkpointing", False):
 | 
			
		||||
            logger.warning("Current model does not support gradient checkpointing.")
 | 
			
		||||
            logger.warning_rank0("Current model does not support gradient checkpointing.")
 | 
			
		||||
        else:
 | 
			
		||||
            # use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
 | 
			
		||||
            # According to: https://github.com/huggingface/transformers/issues/28339
 | 
			
		||||
@ -158,10 +158,10 @@ def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArgum
 | 
			
		||||
            model.gradient_checkpointing_enable = MethodType(gradient_checkpointing_enable, model)
 | 
			
		||||
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True})
 | 
			
		||||
            setattr(model.config, "use_cache", False)  # turn off when gradient checkpointing is enabled
 | 
			
		||||
            logger.info("Gradient checkpointing enabled.")
 | 
			
		||||
            logger.info_rank0("Gradient checkpointing enabled.")
 | 
			
		||||
 | 
			
		||||
    if model_args.upcast_lmhead_output:
 | 
			
		||||
        output_layer = model.get_output_embeddings()
 | 
			
		||||
        if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
 | 
			
		||||
            logger.info("Upcasting lm_head outputs in float32.")
 | 
			
		||||
            logger.info_rank0("Upcasting lm_head outputs in float32.")
 | 
			
		||||
            output_layer.register_forward_hook(_fp32_forward_post_hook)
 | 
			
		||||
 | 
			
		||||
@ -19,14 +19,14 @@ from typing import TYPE_CHECKING
 | 
			
		||||
import torch
 | 
			
		||||
from transformers.integrations import is_deepspeed_zero3_enabled
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from transformers import PreTrainedModel, PreTrainedTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _noisy_mean_initialization(embed_weight: "torch.Tensor", num_new_tokens: int) -> None:
 | 
			
		||||
@ -69,4 +69,4 @@ def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedToken
 | 
			
		||||
            _noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
 | 
			
		||||
            _noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Resized token embeddings from {current_embedding_size} to {new_embedding_size}.")
 | 
			
		||||
        logger.info_rank0(f"Resized token embeddings from {current_embedding_size} to {new_embedding_size}.")
 | 
			
		||||
 | 
			
		||||
@ -15,7 +15,7 @@
 | 
			
		||||
import inspect
 | 
			
		||||
from typing import TYPE_CHECKING
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -24,7 +24,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_liger_kernel(
 | 
			
		||||
@ -54,14 +54,14 @@ def apply_liger_kernel(
 | 
			
		||||
    elif model_type == "qwen2_vl":
 | 
			
		||||
        from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel
 | 
			
		||||
    else:
 | 
			
		||||
        logger.warning("Current model does not support liger kernel.")
 | 
			
		||||
        logger.warning_rank0("Current model does not support liger kernel.")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters:
 | 
			
		||||
        logger.info("Current training stage does not support chunked cross entropy.")
 | 
			
		||||
        logger.info_rank0("Current training stage does not support chunked cross entropy.")
 | 
			
		||||
        kwargs = {"fused_linear_cross_entropy": False}
 | 
			
		||||
    else:
 | 
			
		||||
        kwargs = {}
 | 
			
		||||
 | 
			
		||||
    apply_liger_kernel(**kwargs)
 | 
			
		||||
    logger.info("Liger kernel has been applied to the model.")
 | 
			
		||||
    logger.info_rank0("Liger kernel has been applied to the model.")
 | 
			
		||||
 | 
			
		||||
@ -22,6 +22,7 @@ from typing import TYPE_CHECKING, Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import transformers
 | 
			
		||||
from transformers.models.llama.modeling_llama import (
 | 
			
		||||
    Cache,
 | 
			
		||||
    LlamaAttention,
 | 
			
		||||
@ -30,11 +31,10 @@ from transformers.models.llama.modeling_llama import (
 | 
			
		||||
    apply_rotary_pos_emb,
 | 
			
		||||
    repeat_kv,
 | 
			
		||||
)
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.packages import is_transformers_version_greater_than_4_43
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -44,7 +44,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
transformers_logger = logging.get_logger(__name__)
 | 
			
		||||
transformers_logger = transformers.utils.logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Modified from:
 | 
			
		||||
@ -363,11 +363,11 @@ def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments",
 | 
			
		||||
    if not is_trainable or not model_args.shift_attn:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    logger = get_logger(__name__)
 | 
			
		||||
    logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
    if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
 | 
			
		||||
        setattr(config, "group_size_ratio", 0.25)
 | 
			
		||||
        _apply_llama_patch()
 | 
			
		||||
        logger.info("Using shift short attention with group_size_ratio=1/4.")
 | 
			
		||||
        logger.info_rank0("Using shift short attention with group_size_ratio=1/4.")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.warning("Current model does not support shift short attention.")
 | 
			
		||||
        logger.warning_rank0("Current model does not support shift short attention.")
 | 
			
		||||
 | 
			
		||||
@ -14,14 +14,14 @@
 | 
			
		||||
 | 
			
		||||
from typing import TYPE_CHECKING, List
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool) -> List[str]:
 | 
			
		||||
@ -53,7 +53,7 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
 | 
			
		||||
        if "Linear" in module.__class__.__name__ and "Embedding" not in module.__class__.__name__:
 | 
			
		||||
            module_names.add(name.split(".")[-1])
 | 
			
		||||
 | 
			
		||||
    logger.info("Found linear modules: {}".format(",".join(module_names)))
 | 
			
		||||
    logger.info_rank0("Found linear modules: {}".format(",".join(module_names)))
 | 
			
		||||
    return list(module_names)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -80,7 +80,7 @@ def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], n
 | 
			
		||||
        ):
 | 
			
		||||
            module_names.append(name)
 | 
			
		||||
 | 
			
		||||
    logger.info("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
 | 
			
		||||
    logger.info_rank0("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
 | 
			
		||||
    return module_names
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -43,8 +43,8 @@ import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.packages import is_transformers_version_greater_than_4_43
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -54,7 +54,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_seqlens_in_batch(attention_mask: "torch.Tensor") -> "torch.Tensor":
 | 
			
		||||
@ -152,6 +152,6 @@ def configure_packing(config: "PretrainedConfig", model_args: "ModelArguments",
 | 
			
		||||
    model_type = getattr(config, "model_type", None)
 | 
			
		||||
    if model_type in SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN:
 | 
			
		||||
        _patch_for_block_diag_attn(model_type)
 | 
			
		||||
        logger.info("Using block diagonal attention for sequence packing without cross-attention.")
 | 
			
		||||
        logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.")
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError("Current model does not support block diagonal attention.")
 | 
			
		||||
 | 
			
		||||
@ -28,8 +28,8 @@ from transformers.integrations import is_deepspeed_zero3_enabled
 | 
			
		||||
from transformers.modeling_utils import is_fsdp_enabled
 | 
			
		||||
from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import FILEEXT2TYPE
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.misc import get_current_device
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -39,7 +39,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@unique
 | 
			
		||||
@ -109,7 +109,7 @@ def configure_quantization(
 | 
			
		||||
    """
 | 
			
		||||
    if getattr(config, "quantization_config", None):  # ptq
 | 
			
		||||
        if model_args.quantization_bit is not None:
 | 
			
		||||
            logger.warning("`quantization_bit` will not affect on the PTQ-quantized models.")
 | 
			
		||||
            logger.warning_rank0("`quantization_bit` will not affect on the PTQ-quantized models.")
 | 
			
		||||
 | 
			
		||||
        if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
 | 
			
		||||
            raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")
 | 
			
		||||
@ -130,7 +130,7 @@ def configure_quantization(
 | 
			
		||||
            quantization_config["bits"] = 2
 | 
			
		||||
 | 
			
		||||
        quant_bits = quantization_config.get("bits", "?")
 | 
			
		||||
        logger.info(f"Loading {quant_bits}-bit {quant_method.upper()}-quantized model.")
 | 
			
		||||
        logger.info_rank0(f"Loading {quant_bits}-bit {quant_method.upper()}-quantized model.")
 | 
			
		||||
 | 
			
		||||
    elif model_args.export_quantization_bit is not None:  # auto-gptq
 | 
			
		||||
        if model_args.export_quantization_bit not in [8, 4, 3, 2]:
 | 
			
		||||
@ -149,7 +149,7 @@ def configure_quantization(
 | 
			
		||||
        )
 | 
			
		||||
        init_kwargs["device_map"] = "auto"
 | 
			
		||||
        init_kwargs["max_memory"] = get_max_memory()
 | 
			
		||||
        logger.info(f"Quantizing model to {model_args.export_quantization_bit} bit with AutoGPTQ.")
 | 
			
		||||
        logger.info_rank0(f"Quantizing model to {model_args.export_quantization_bit} bit with AutoGPTQ.")
 | 
			
		||||
 | 
			
		||||
    elif model_args.quantization_bit is not None:  # on-the-fly
 | 
			
		||||
        if model_args.quantization_method == QuantizationMethod.BITS_AND_BYTES.value:
 | 
			
		||||
@ -179,7 +179,7 @@ def configure_quantization(
 | 
			
		||||
            else:
 | 
			
		||||
                init_kwargs["device_map"] = {"": get_current_device()}  # change auto device map for inference
 | 
			
		||||
 | 
			
		||||
            logger.info(f"Quantizing model to {model_args.quantization_bit} bit with bitsandbytes.")
 | 
			
		||||
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with bitsandbytes.")
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.HQQ.value:
 | 
			
		||||
            if model_args.quantization_bit not in [8, 6, 5, 4, 3, 2, 1]:
 | 
			
		||||
                raise ValueError("HQQ only accepts 1/2/3/4/5/6/8-bit quantization.")
 | 
			
		||||
@ -191,7 +191,7 @@ def configure_quantization(
 | 
			
		||||
            init_kwargs["quantization_config"] = HqqConfig(
 | 
			
		||||
                nbits=model_args.quantization_bit, quant_zero=False, quant_scale=False, axis=0
 | 
			
		||||
            )  # use ATEN kernel (axis=0) for performance
 | 
			
		||||
            logger.info(f"Quantizing model to {model_args.quantization_bit} bit with HQQ.")
 | 
			
		||||
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with HQQ.")
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.EETQ.value:
 | 
			
		||||
            if model_args.quantization_bit != 8:
 | 
			
		||||
                raise ValueError("EETQ only accepts 8-bit quantization.")
 | 
			
		||||
@ -201,4 +201,4 @@ def configure_quantization(
 | 
			
		||||
 | 
			
		||||
            require_version("eetq", "To fix: pip install eetq")
 | 
			
		||||
            init_kwargs["quantization_config"] = EetqConfig()
 | 
			
		||||
            logger.info(f"Quantizing model to {model_args.quantization_bit} bit with EETQ.")
 | 
			
		||||
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with EETQ.")
 | 
			
		||||
 | 
			
		||||
@ -19,7 +19,7 @@
 | 
			
		||||
import math
 | 
			
		||||
from typing import TYPE_CHECKING
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -28,7 +28,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
 | 
			
		||||
@ -36,26 +36,28 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    if not hasattr(config, "rope_scaling"):
 | 
			
		||||
        logger.warning("Current model does not support RoPE scaling.")
 | 
			
		||||
        logger.warning_rank0("Current model does not support RoPE scaling.")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    if model_args.model_max_length is not None:
 | 
			
		||||
        if is_trainable and model_args.rope_scaling == "dynamic":
 | 
			
		||||
            logger.warning(
 | 
			
		||||
            logger.warning_rank0(
 | 
			
		||||
                "Dynamic NTK scaling may not work well with fine-tuning. "
 | 
			
		||||
                "See: https://github.com/huggingface/transformers/pull/24653"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        current_max_length = getattr(config, "max_position_embeddings", None)
 | 
			
		||||
        if current_max_length and model_args.model_max_length > current_max_length:
 | 
			
		||||
            logger.info(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
 | 
			
		||||
            logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
 | 
			
		||||
            setattr(config, "max_position_embeddings", model_args.model_max_length)
 | 
			
		||||
            scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
 | 
			
		||||
        else:
 | 
			
		||||
            logger.warning("Input length is smaller than max length. Consider increase input length.")
 | 
			
		||||
            logger.warning_rank0("Input length is smaller than max length. Consider increase input length.")
 | 
			
		||||
            scaling_factor = 1.0
 | 
			
		||||
    else:
 | 
			
		||||
        scaling_factor = 2.0
 | 
			
		||||
 | 
			
		||||
    setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
 | 
			
		||||
    logger.info(f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {scaling_factor}")
 | 
			
		||||
    logger.info_rank0(
 | 
			
		||||
        f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {scaling_factor}"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
@ -14,7 +14,7 @@
 | 
			
		||||
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, Optional
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.misc import get_current_device
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -24,7 +24,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_unsloth_kwargs(
 | 
			
		||||
@ -56,7 +56,7 @@ def load_unsloth_pretrained_model(
 | 
			
		||||
    try:
 | 
			
		||||
        model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
 | 
			
		||||
    except NotImplementedError:
 | 
			
		||||
        logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
 | 
			
		||||
        logger.warning_rank0("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
 | 
			
		||||
        model = None
 | 
			
		||||
        model_args.use_unsloth = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -17,8 +17,8 @@ from typing import TYPE_CHECKING, Dict
 | 
			
		||||
import torch
 | 
			
		||||
from transformers.utils import cached_file
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -27,7 +27,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
 | 
			
		||||
@ -54,8 +54,8 @@ def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") ->
 | 
			
		||||
    except Exception as err:
 | 
			
		||||
        err_text = str(err)
 | 
			
		||||
 | 
			
		||||
    logger.info(f"Provided path ({path_or_repo_id}) does not contain value head weights: {err_text}.")
 | 
			
		||||
    logger.info("Ignore the above message if you are not resuming the training of a value head model.")
 | 
			
		||||
    logger.info_rank0(f"Provided path ({path_or_repo_id}) does not contain value head weights: {err_text}.")
 | 
			
		||||
    logger.info_rank0("Ignore the above message if you are not resuming the training of a value head model.")
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -18,11 +18,11 @@
 | 
			
		||||
from typing import TYPE_CHECKING, List, Sequence, Set, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import transformers
 | 
			
		||||
import transformers.models
 | 
			
		||||
from transformers.activations import ACT2FN
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -31,8 +31,8 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
transformers_logger = logging.get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
transformers_logger = transformers.utils.logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
 | 
			
		||||
@ -99,7 +99,7 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
 | 
			
		||||
        else:
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
 | 
			
		||||
        logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
 | 
			
		||||
        mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -119,7 +119,7 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
 | 
			
		||||
        setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
 | 
			
		||||
 | 
			
		||||
    if getattr(config, "is_yi_vl_derived_model", None):
 | 
			
		||||
        logger.info("Detected Yi-VL model, applying projector patch.")
 | 
			
		||||
        logger.info_rank0("Detected Yi-VL model, applying projector patch.")
 | 
			
		||||
        transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -22,7 +22,7 @@ from transformers import PreTrainedModel, PreTrainedTokenizerBase, is_torch_npu_
 | 
			
		||||
from transformers.integrations import is_deepspeed_zero3_enabled
 | 
			
		||||
from transformers.modeling_utils import is_fsdp_enabled
 | 
			
		||||
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.misc import infer_optim_dtype
 | 
			
		||||
from .model_utils.attention import configure_attn_implementation, print_attn_implementation
 | 
			
		||||
from .model_utils.checkpointing import prepare_model_for_training
 | 
			
		||||
@ -49,7 +49,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
 | 
			
		||||
@ -100,7 +100,7 @@ def patch_config(
 | 
			
		||||
 | 
			
		||||
    if model_args.use_cache and not is_trainable:
 | 
			
		||||
        setattr(config, "use_cache", True)
 | 
			
		||||
        logger.info("Using KV cache for faster generation.")
 | 
			
		||||
        logger.info_rank0("Using KV cache for faster generation.")
 | 
			
		||||
 | 
			
		||||
    if getattr(config, "model_type", None) == "qwen":
 | 
			
		||||
        setattr(config, "use_flash_attn", model_args.flash_attn == "fa2")
 | 
			
		||||
@ -165,7 +165,7 @@ def patch_model(
 | 
			
		||||
    try:
 | 
			
		||||
        model.add_model_tags(["llama-factory"])
 | 
			
		||||
    except Exception:
 | 
			
		||||
        logger.warning("Cannot properly tag the model.")
 | 
			
		||||
        logger.warning_rank0("Cannot properly tag the model.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
 | 
			
		||||
 | 
			
		||||
@ -13,7 +13,6 @@
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import json
 | 
			
		||||
import logging
 | 
			
		||||
import os
 | 
			
		||||
import signal
 | 
			
		||||
import sys
 | 
			
		||||
@ -34,8 +33,8 @@ from transformers.utils import (
 | 
			
		||||
)
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import TRAINER_LOG, V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
 | 
			
		||||
from ..extras.logging import LoggerHandler, get_logger
 | 
			
		||||
from ..extras.misc import get_peak_memory
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +47,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from trl import AutoModelForCausalLMWithValueHead
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fix_valuehead_checkpoint(
 | 
			
		||||
@ -92,7 +91,7 @@ def fix_valuehead_checkpoint(
 | 
			
		||||
    else:
 | 
			
		||||
        torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
 | 
			
		||||
 | 
			
		||||
    logger.info(f"Value head model saved at: {output_dir}")
 | 
			
		||||
    logger.info_rank0(f"Value head model saved at: {output_dir}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FixValueHeadModelCallback(TrainerCallback):
 | 
			
		||||
@ -145,7 +144,7 @@ class PissaConvertCallback(TrainerCallback):
 | 
			
		||||
        if args.should_save:
 | 
			
		||||
            model = kwargs.pop("model")
 | 
			
		||||
            pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
 | 
			
		||||
            logger.info(f"Initial PiSSA adapter will be saved at: {pissa_init_dir}.")
 | 
			
		||||
            logger.info_rank0(f"Initial PiSSA adapter will be saved at: {pissa_init_dir}.")
 | 
			
		||||
            if isinstance(model, PeftModel):
 | 
			
		||||
                init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
 | 
			
		||||
                setattr(model.peft_config["default"], "init_lora_weights", True)
 | 
			
		||||
@ -159,7 +158,7 @@ class PissaConvertCallback(TrainerCallback):
 | 
			
		||||
            pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
 | 
			
		||||
            pissa_backup_dir = os.path.join(args.output_dir, "pissa_backup")
 | 
			
		||||
            pissa_convert_dir = os.path.join(args.output_dir, "pissa_converted")
 | 
			
		||||
            logger.info(f"Converted PiSSA adapter will be saved at: {pissa_convert_dir}.")
 | 
			
		||||
            logger.info_rank0(f"Converted PiSSA adapter will be saved at: {pissa_convert_dir}.")
 | 
			
		||||
            # 1. save a pissa backup with init_lora_weights: True
 | 
			
		||||
            # 2. save a converted lora with init_lora_weights: pissa
 | 
			
		||||
            # 3. load the pissa backup with init_lora_weights: True
 | 
			
		||||
@ -200,8 +199,8 @@ class LogCallback(TrainerCallback):
 | 
			
		||||
        self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
 | 
			
		||||
        if self.webui_mode:
 | 
			
		||||
            signal.signal(signal.SIGABRT, self._set_abort)
 | 
			
		||||
            self.logger_handler = LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
 | 
			
		||||
            logging.root.addHandler(self.logger_handler)
 | 
			
		||||
            self.logger_handler = logging.LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
 | 
			
		||||
            logging.add_handler(self.logger_handler)
 | 
			
		||||
            transformers.logging.add_handler(self.logger_handler)
 | 
			
		||||
 | 
			
		||||
    def _set_abort(self, signum, frame) -> None:
 | 
			
		||||
@ -243,7 +242,7 @@ class LogCallback(TrainerCallback):
 | 
			
		||||
            and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
 | 
			
		||||
            and args.overwrite_output_dir
 | 
			
		||||
        ):
 | 
			
		||||
            logger.warning("Previous trainer log in this folder will be deleted.")
 | 
			
		||||
            logger.warning_once("Previous trainer log in this folder will be deleted.")
 | 
			
		||||
            os.remove(os.path.join(args.output_dir, TRAINER_LOG))
 | 
			
		||||
 | 
			
		||||
    @override
 | 
			
		||||
@ -310,7 +309,7 @@ class LogCallback(TrainerCallback):
 | 
			
		||||
 | 
			
		||||
        logs = {k: v for k, v in logs.items() if v is not None}
 | 
			
		||||
        if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
 | 
			
		||||
            logger.info(
 | 
			
		||||
            logger.info_rank0(
 | 
			
		||||
                "{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
 | 
			
		||||
                    logs["loss"], logs["learning_rate"], logs["epoch"], logs.get("throughput", "N/A")
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
@ -37,7 +37,7 @@ from trl.core import PPODecorators, logprobs_from_logits
 | 
			
		||||
from trl.models.utils import unwrap_model_for_generation
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
 | 
			
		||||
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
 | 
			
		||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
 | 
			
		||||
@ -58,7 +58,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
@ -112,7 +112,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
            ]
 | 
			
		||||
            ppo_config.accelerator_kwargs["deepspeed_plugin"] = training_args.deepspeed_plugin
 | 
			
		||||
            if ppo_config.log_with is not None:
 | 
			
		||||
                logger.warning("PPOTrainer cannot use external logger when DeepSpeed is enabled.")
 | 
			
		||||
                logger.warning_rank0("PPOTrainer cannot use external logger when DeepSpeed is enabled.")
 | 
			
		||||
                ppo_config.log_with = None
 | 
			
		||||
 | 
			
		||||
        # Create optimizer and scheduler
 | 
			
		||||
@ -160,7 +160,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
            callbacks, self.accelerator.unwrap_model(self.model), self.tokenizer, self.optimizer, self.lr_scheduler
 | 
			
		||||
        )
 | 
			
		||||
        if self.args.max_steps > 0:
 | 
			
		||||
            logger.info("max_steps is given, it will override any value given in num_train_epochs")
 | 
			
		||||
            logger.info_rank0("max_steps is given, it will override any value given in num_train_epochs")
 | 
			
		||||
 | 
			
		||||
        self.amp_context = torch.autocast(self.current_device.type)
 | 
			
		||||
        warnings.simplefilter("ignore")  # remove gc warnings on ref model
 | 
			
		||||
@ -216,20 +216,19 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
        self.state.is_local_process_zero = self.is_local_process_zero()
 | 
			
		||||
        self.state.is_world_process_zero = self.is_world_process_zero()
 | 
			
		||||
 | 
			
		||||
        if self.is_world_process_zero():
 | 
			
		||||
            logger.info("***** Running training *****")
 | 
			
		||||
            logger.info(f"  Num examples = {num_examples:,}")
 | 
			
		||||
            logger.info(f"  Num Epochs = {num_train_epochs:,}")
 | 
			
		||||
            logger.info(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}")
 | 
			
		||||
            logger.info(
 | 
			
		||||
                "  Total train batch size (w. parallel, buffer, distributed & accumulation) = {:,}".format(
 | 
			
		||||
                    total_train_batch_size
 | 
			
		||||
                )
 | 
			
		||||
        logger.info_rank0("***** Running training *****")
 | 
			
		||||
        logger.info_rank0(f"  Num examples = {num_examples:,}")
 | 
			
		||||
        logger.info_rank0(f"  Num Epochs = {num_train_epochs:,}")
 | 
			
		||||
        logger.info_rank0(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}")
 | 
			
		||||
        logger.info_rank0(
 | 
			
		||||
            "  Total train batch size (w. parallel, buffer, distributed & accumulation) = {:,}".format(
 | 
			
		||||
                total_train_batch_size
 | 
			
		||||
            )
 | 
			
		||||
            logger.info(f"  Gradient Accumulation steps = {self.args.gradient_accumulation_steps:,}")
 | 
			
		||||
            logger.info(f"  Num optimization epochs per batch = {self.finetuning_args.ppo_epochs:,}")
 | 
			
		||||
            logger.info(f"  Total training steps = {max_steps:,}")
 | 
			
		||||
            logger.info(f"  Number of trainable parameters = {count_parameters(self.model)[0]:,}")
 | 
			
		||||
        )
 | 
			
		||||
        logger.info_rank0(f"  Gradient Accumulation steps = {self.args.gradient_accumulation_steps:,}")
 | 
			
		||||
        logger.info_rank0(f"  Num optimization epochs per batch = {self.finetuning_args.ppo_epochs:,}")
 | 
			
		||||
        logger.info_rank0(f"  Total training steps = {max_steps:,}")
 | 
			
		||||
        logger.info_rank0(f"  Number of trainable parameters = {count_parameters(self.model)[0]:,}")
 | 
			
		||||
 | 
			
		||||
        dataiter = iter(self.dataloader)
 | 
			
		||||
        loss_meter = AverageMeter()
 | 
			
		||||
@ -269,7 +268,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
                    batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
 | 
			
		||||
                    self.log_stats(stats, batch, rewards)
 | 
			
		||||
                except Exception:
 | 
			
		||||
                    logger.warning("Failed to save stats due to unknown errors.")
 | 
			
		||||
                    logger.warning_rank0("Failed to save stats due to unknown errors.")
 | 
			
		||||
 | 
			
		||||
            self.state.global_step += 1
 | 
			
		||||
            self.callback_handler.on_step_end(self.args, self.state, self.control)
 | 
			
		||||
@ -498,7 +497,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
 | 
			
		||||
                if self.args.should_save:
 | 
			
		||||
                    self._save(output_dir, state_dict=state_dict)
 | 
			
		||||
            except ValueError:
 | 
			
		||||
                logger.warning(
 | 
			
		||||
                logger.warning_rank0(
 | 
			
		||||
                    " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
 | 
			
		||||
                    " use zero_to_fp32.py to recover weights"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,6 @@ from typing import TYPE_CHECKING, Optional
 | 
			
		||||
from transformers import Trainer
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.packages import is_transformers_version_equal_to_4_46
 | 
			
		||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
 | 
			
		||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
 | 
			
		||||
@ -31,9 +30,6 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import FinetuningArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CustomTrainer(Trainer):
 | 
			
		||||
    r"""
 | 
			
		||||
    Inherits Trainer for custom optimizer.
 | 
			
		||||
 | 
			
		||||
@ -24,7 +24,7 @@ import torch
 | 
			
		||||
from transformers import Trainer
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.packages import is_transformers_version_equal_to_4_46
 | 
			
		||||
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
 | 
			
		||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
 | 
			
		||||
@ -37,7 +37,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import FinetuningArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PairwiseTrainer(Trainer):
 | 
			
		||||
@ -118,7 +118,7 @@ class PairwiseTrainer(Trainer):
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
 | 
			
		||||
        logger.info(f"Saving prediction results to {output_prediction_file}")
 | 
			
		||||
        logger.info_rank0(f"Saving prediction results to {output_prediction_file}")
 | 
			
		||||
        chosen_scores, rejected_scores = predict_results.predictions
 | 
			
		||||
 | 
			
		||||
        with open(output_prediction_file, "w", encoding="utf-8") as writer:
 | 
			
		||||
 | 
			
		||||
@ -25,8 +25,8 @@ import torch
 | 
			
		||||
from transformers import Seq2SeqTrainer
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.packages import is_transformers_version_equal_to_4_46
 | 
			
		||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
 | 
			
		||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
 | 
			
		||||
@ -40,7 +40,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ...hparams import FinetuningArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
 | 
			
		||||
@ -142,7 +142,7 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
 | 
			
		||||
        logger.info(f"Saving prediction results to {output_prediction_file}")
 | 
			
		||||
        logger.info_rank0(f"Saving prediction results to {output_prediction_file}")
 | 
			
		||||
 | 
			
		||||
        labels = np.where(
 | 
			
		||||
            predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
 | 
			
		||||
 | 
			
		||||
@ -28,8 +28,8 @@ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
 | 
			
		||||
from transformers.trainer_pt_utils import get_parameter_names
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import IGNORE_INDEX
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.packages import is_galore_available
 | 
			
		||||
from ..hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
 | 
			
		||||
@ -46,7 +46,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from ..hparams import DataArguments
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DummyOptimizer(torch.optim.Optimizer):
 | 
			
		||||
@ -116,7 +116,7 @@ def create_ref_model(
 | 
			
		||||
        ref_model = load_model(
 | 
			
		||||
            tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
 | 
			
		||||
        )
 | 
			
		||||
        logger.info(f"Created reference model from {finetuning_args.ref_model}")
 | 
			
		||||
        logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
 | 
			
		||||
    else:
 | 
			
		||||
        if finetuning_args.finetuning_type == "lora":
 | 
			
		||||
            ref_model = None
 | 
			
		||||
@ -127,7 +127,7 @@ def create_ref_model(
 | 
			
		||||
            ref_model = load_model(
 | 
			
		||||
                tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
 | 
			
		||||
            )
 | 
			
		||||
            logger.info("Created reference model from the model itself.")
 | 
			
		||||
            logger.info_rank0("Created reference model from the model itself.")
 | 
			
		||||
 | 
			
		||||
    return ref_model
 | 
			
		||||
 | 
			
		||||
@ -140,7 +140,7 @@ def create_reward_model(
 | 
			
		||||
    """
 | 
			
		||||
    if finetuning_args.reward_model_type == "api":
 | 
			
		||||
        assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
 | 
			
		||||
        logger.info(f"Use reward server {finetuning_args.reward_model}")
 | 
			
		||||
        logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
 | 
			
		||||
        return finetuning_args.reward_model
 | 
			
		||||
    elif finetuning_args.reward_model_type == "lora":
 | 
			
		||||
        model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
 | 
			
		||||
@ -157,7 +157,7 @@ def create_reward_model(
 | 
			
		||||
        model.register_buffer(
 | 
			
		||||
            "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
 | 
			
		||||
        )
 | 
			
		||||
        logger.info(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
 | 
			
		||||
        logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
 | 
			
		||||
        return None
 | 
			
		||||
    else:
 | 
			
		||||
        reward_model_args = ModelArguments.copyfrom(
 | 
			
		||||
@ -171,8 +171,8 @@ def create_reward_model(
 | 
			
		||||
        reward_model = load_model(
 | 
			
		||||
            tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
 | 
			
		||||
        )
 | 
			
		||||
        logger.info(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
 | 
			
		||||
        logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
 | 
			
		||||
        logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
 | 
			
		||||
        logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
 | 
			
		||||
        return reward_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -265,7 +265,7 @@ def _create_galore_optimizer(
 | 
			
		||||
        ]
 | 
			
		||||
        optimizer = optim_class(param_groups, **optim_kwargs)
 | 
			
		||||
 | 
			
		||||
    logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
 | 
			
		||||
    logger.info_rank0("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
 | 
			
		||||
    return optimizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -305,7 +305,7 @@ def _create_loraplus_optimizer(
 | 
			
		||||
        dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
 | 
			
		||||
    ]
 | 
			
		||||
    optimizer = optim_class(param_groups, **optim_kwargs)
 | 
			
		||||
    logger.info(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
 | 
			
		||||
    logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
 | 
			
		||||
    return optimizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -343,7 +343,7 @@ def _create_badam_optimizer(
 | 
			
		||||
            verbose=finetuning_args.badam_verbose,
 | 
			
		||||
            ds_zero3_enabled=is_deepspeed_zero3_enabled(),
 | 
			
		||||
        )
 | 
			
		||||
        logger.info(
 | 
			
		||||
        logger.info_rank0(
 | 
			
		||||
            f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
 | 
			
		||||
            f"switch block every {finetuning_args.badam_switch_interval} steps, "
 | 
			
		||||
            f"default start block is {finetuning_args.badam_start_block}"
 | 
			
		||||
@ -362,7 +362,7 @@ def _create_badam_optimizer(
 | 
			
		||||
            include_embedding=False,
 | 
			
		||||
            **optim_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
        logger.info(
 | 
			
		||||
        logger.info_rank0(
 | 
			
		||||
            f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
 | 
			
		||||
            f"mask mode is {finetuning_args.badam_mask_mode}"
 | 
			
		||||
        )
 | 
			
		||||
@ -391,7 +391,7 @@ def _create_adam_mini_optimizer(
 | 
			
		||||
        n_heads=num_q_head,
 | 
			
		||||
        n_kv_heads=num_kv_head,
 | 
			
		||||
    )
 | 
			
		||||
    logger.info("Using Adam-mini optimizer.")
 | 
			
		||||
    logger.info_rank0("Using Adam-mini optimizer.")
 | 
			
		||||
    return optimizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,8 +20,8 @@ import torch
 | 
			
		||||
from transformers import PreTrainedModel
 | 
			
		||||
 | 
			
		||||
from ..data import get_template_and_fix_tokenizer
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..hparams import get_infer_args, get_train_args
 | 
			
		||||
from ..model import load_model, load_tokenizer
 | 
			
		||||
from .callbacks import LogCallback
 | 
			
		||||
@ -37,7 +37,7 @@ if TYPE_CHECKING:
 | 
			
		||||
    from transformers import TrainerCallback
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
 | 
			
		||||
@ -91,7 +91,7 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
 | 
			
		||||
 | 
			
		||||
        setattr(model.config, "torch_dtype", output_dtype)
 | 
			
		||||
        model = model.to(output_dtype)
 | 
			
		||||
        logger.info(f"Convert model dtype to: {output_dtype}.")
 | 
			
		||||
        logger.info_rank0(f"Convert model dtype to: {output_dtype}.")
 | 
			
		||||
 | 
			
		||||
    model.save_pretrained(
 | 
			
		||||
        save_directory=model_args.export_dir,
 | 
			
		||||
@ -117,13 +117,13 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
 | 
			
		||||
                os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME),
 | 
			
		||||
                os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME),
 | 
			
		||||
            )
 | 
			
		||||
            logger.info(f"Copied valuehead to {model_args.export_dir}.")
 | 
			
		||||
            logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.")
 | 
			
		||||
        elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)):
 | 
			
		||||
            shutil.copy(
 | 
			
		||||
                os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME),
 | 
			
		||||
                os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME),
 | 
			
		||||
            )
 | 
			
		||||
            logger.info(f"Copied valuehead to {model_args.export_dir}.")
 | 
			
		||||
            logger.info_rank0(f"Copied valuehead to {model_args.export_dir}.")
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        tokenizer.padding_side = "left"  # restore padding side
 | 
			
		||||
@ -138,4 +138,4 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
 | 
			
		||||
                processor.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
 | 
			
		||||
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.warning(f"Cannot save tokenizer, please copy the files manually: {e}.")
 | 
			
		||||
        logger.warning_rank0(f"Cannot save tokenizer, please copy the files manually: {e}.")
 | 
			
		||||
 | 
			
		||||
@ -19,6 +19,7 @@ from typing import Any, Dict, Optional, Tuple
 | 
			
		||||
 | 
			
		||||
from yaml import safe_dump, safe_load
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import (
 | 
			
		||||
    CHECKPOINT_NAMES,
 | 
			
		||||
    DATA_CONFIG,
 | 
			
		||||
@ -30,7 +31,6 @@ from ..extras.constants import (
 | 
			
		||||
    VISION_MODELS,
 | 
			
		||||
    DownloadSource,
 | 
			
		||||
)
 | 
			
		||||
from ..extras.logging import get_logger
 | 
			
		||||
from ..extras.misc import use_modelscope, use_openmind
 | 
			
		||||
from ..extras.packages import is_gradio_available
 | 
			
		||||
 | 
			
		||||
@ -39,7 +39,7 @@ if is_gradio_available():
 | 
			
		||||
    import gradio as gr
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEFAULT_CACHE_DIR = "cache"
 | 
			
		||||
@ -56,7 +56,7 @@ def get_save_dir(*paths: str) -> os.PathLike:
 | 
			
		||||
    Gets the path to saved model checkpoints.
 | 
			
		||||
    """
 | 
			
		||||
    if os.path.sep in paths[-1]:
 | 
			
		||||
        logger.warning("Found complex path, some features may be not available.")
 | 
			
		||||
        logger.warning_rank0("Found complex path, some features may be not available.")
 | 
			
		||||
        return paths[-1]
 | 
			
		||||
 | 
			
		||||
    paths = (path.replace(" ", "").strip() for path in paths)
 | 
			
		||||
@ -172,14 +172,14 @@ def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
 | 
			
		||||
    Loads dataset_info.json.
 | 
			
		||||
    """
 | 
			
		||||
    if dataset_dir == "ONLINE" or dataset_dir.startswith("REMOTE:"):
 | 
			
		||||
        logger.info(f"dataset_dir is {dataset_dir}, using online dataset.")
 | 
			
		||||
        logger.info_rank0(f"dataset_dir is {dataset_dir}, using online dataset.")
 | 
			
		||||
        return {}
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(os.path.join(dataset_dir, DATA_CONFIG), encoding="utf-8") as f:
 | 
			
		||||
            return json.load(f)
 | 
			
		||||
    except Exception as err:
 | 
			
		||||
        logger.warning(f"Cannot open {os.path.join(dataset_dir, DATA_CONFIG)} due to {str(err)}.")
 | 
			
		||||
        logger.warning_rank0(f"Cannot open {os.path.join(dataset_dir, DATA_CONFIG)} due to {str(err)}.")
 | 
			
		||||
        return {}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -22,7 +22,7 @@ from transformers.trainer import TRAINING_ARGS_NAME
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
 | 
			
		||||
from ..extras.misc import is_gpu_or_npu_available, torch_gc
 | 
			
		||||
from ..extras.packages import is_gradio_available
 | 
			
		||||
from ..extras.packages import is_gradio_available, is_transformers_version_equal_to_4_46
 | 
			
		||||
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, QUANTIZATION_BITS, get_save_dir, load_config
 | 
			
		||||
from .locales import ALERTS, LOCALES
 | 
			
		||||
from .utils import abort_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd
 | 
			
		||||
@ -152,7 +152,7 @@ class Runner:
 | 
			
		||||
            pure_bf16=(get("train.compute_type") == "pure_bf16"),
 | 
			
		||||
            plot_loss=True,
 | 
			
		||||
            ddp_timeout=180000000,
 | 
			
		||||
            include_num_input_tokens_seen=True,
 | 
			
		||||
            include_num_input_tokens_seen=False if is_transformers_version_equal_to_4_46() else True,  # FIXME
 | 
			
		||||
            **json.loads(get("train.extra_args")),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user