mirror of
				https://github.com/facebookresearch/sam2.git
				synced 2025-11-04 19:42:12 +08:00 
			
		
		
		
	Move HF to separate section
This commit is contained in:
		
							parent
							
								
									c3393d8b5f
								
							
						
					
					
						commit
						e9503c96fe
					
				
							
								
								
									
										36
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								README.md
									
									
									
									
									
								
							@ -72,19 +72,6 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    masks, _, _ = predictor.predict(<input_prompts>)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or from Hugging Face, as follows:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import torch
 | 
			
		||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
 | 
			
		||||
 | 
			
		||||
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
 | 
			
		||||
 | 
			
		||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    predictor.set_image(<your_image>)
 | 
			
		||||
    masks, _, _ = predictor.predict(<input_prompts>)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) for static image use cases.
 | 
			
		||||
 | 
			
		||||
SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) for automatic mask generation in images.
 | 
			
		||||
@ -110,7 +97,26 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
        ...
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or from Hugging Face, as follows:
 | 
			
		||||
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
 | 
			
		||||
 | 
			
		||||
## Load from Hugging Face
 | 
			
		||||
 | 
			
		||||
Alternatively, models can also be loaded from Hugging Face using the `from_pretrained` method:
 | 
			
		||||
 | 
			
		||||
For image prediction:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import torch
 | 
			
		||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
 | 
			
		||||
 | 
			
		||||
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
 | 
			
		||||
 | 
			
		||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    predictor.set_image(<your_image>)
 | 
			
		||||
    masks, _, _ = predictor.predict(<input_prompts>)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
For video prediction:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import torch
 | 
			
		||||
@ -123,8 +129,6 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    masks, _, _ = predictor.predict(<input_prompts>)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
 | 
			
		||||
 | 
			
		||||
## Model Description
 | 
			
		||||
 | 
			
		||||
|      **Model**       | **Size (M)** |    **Speed (FPS)**     | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user