mirror of
				https://github.com/facebookresearch/sam2.git
				synced 2025-11-04 11:32:12 +08:00 
			
		
		
		
	Merge pull request #128 from NielsRogge/add_hf
Integrate with Hugging Face
This commit is contained in:
		
						commit
						6ba4c65cb2
					
				
							
								
								
									
										36
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								README.md
									
									
									
									
									
								
							@ -101,6 +101,42 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
 | 
			
		||||
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
 | 
			
		||||
 | 
			
		||||
## Load from 🤗 Hugging Face
 | 
			
		||||
 | 
			
		||||
Alternatively, models can also be loaded from [Hugging Face](https://huggingface.co/models?search=facebook/sam2) (requires `pip install huggingface_hub`).
 | 
			
		||||
 | 
			
		||||
For image prediction:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import torch
 | 
			
		||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
 | 
			
		||||
 | 
			
		||||
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
 | 
			
		||||
 | 
			
		||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    predictor.set_image(<your_image>)
 | 
			
		||||
    masks, _, _ = predictor.predict(<input_prompts>)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
For video prediction:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import torch
 | 
			
		||||
from sam2.sam2_video_predictor import SAM2VideoPredictor
 | 
			
		||||
 | 
			
		||||
predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-large")
 | 
			
		||||
 | 
			
		||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
 | 
			
		||||
    state = predictor.init_state(<your_video>)
 | 
			
		||||
 | 
			
		||||
    # add new prompts and instantly get the output on the same frame
 | 
			
		||||
    frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
 | 
			
		||||
 | 
			
		||||
    # propagate the prompts to get masklets throughout the video
 | 
			
		||||
    for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
 | 
			
		||||
        ...
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Model Description
 | 
			
		||||
 | 
			
		||||
|      **Model**       | **Size (M)** |    **Speed (FPS)**     | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
 | 
			
		||||
 | 
			
		||||
@ -76,6 +76,44 @@ def build_sam2_video_predictor(
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_sam2_hf(model_id, **kwargs):
 | 
			
		||||
 | 
			
		||||
    from huggingface_hub import hf_hub_download
 | 
			
		||||
 | 
			
		||||
    model_id_to_filenames = {
 | 
			
		||||
        "facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
 | 
			
		||||
        "facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
 | 
			
		||||
        "facebook/sam2-hiera-base-plus": (
 | 
			
		||||
            "sam2_hiera_b+.yaml",
 | 
			
		||||
            "sam2_hiera_base_plus.pt",
 | 
			
		||||
        ),
 | 
			
		||||
        "facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
 | 
			
		||||
    }
 | 
			
		||||
    config_name, checkpoint_name = model_id_to_filenames[model_id]
 | 
			
		||||
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
 | 
			
		||||
    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_sam2_video_predictor_hf(model_id, **kwargs):
 | 
			
		||||
 | 
			
		||||
    from huggingface_hub import hf_hub_download
 | 
			
		||||
 | 
			
		||||
    model_id_to_filenames = {
 | 
			
		||||
        "facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
 | 
			
		||||
        "facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
 | 
			
		||||
        "facebook/sam2-hiera-base-plus": (
 | 
			
		||||
            "sam2_hiera_b+.yaml",
 | 
			
		||||
            "sam2_hiera_base_plus.pt",
 | 
			
		||||
        ),
 | 
			
		||||
        "facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
 | 
			
		||||
    }
 | 
			
		||||
    config_name, checkpoint_name = model_id_to_filenames[model_id]
 | 
			
		||||
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
 | 
			
		||||
    return build_sam2_video_predictor(
 | 
			
		||||
        config_file=config_name, ckpt_path=ckpt_path, **kwargs
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _load_checkpoint(model, ckpt_path):
 | 
			
		||||
    if ckpt_path is not None:
 | 
			
		||||
        sd = torch.load(ckpt_path, map_location="cpu")["model"]
 | 
			
		||||
 | 
			
		||||
@ -62,6 +62,23 @@ class SAM2ImagePredictor:
 | 
			
		||||
            (64, 64),
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
 | 
			
		||||
        """
 | 
			
		||||
        Load a pretrained model from the Hugging Face hub.
 | 
			
		||||
 | 
			
		||||
        Arguments:
 | 
			
		||||
          model_id (str): The Hugging Face repository ID.
 | 
			
		||||
          **kwargs: Additional arguments to pass to the model constructor.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
          (SAM2ImagePredictor): The loaded model.
 | 
			
		||||
        """
 | 
			
		||||
        from sam2.build_sam import build_sam2_hf
 | 
			
		||||
 | 
			
		||||
        sam_model = build_sam2_hf(model_id, **kwargs)
 | 
			
		||||
        return cls(sam_model)
 | 
			
		||||
 | 
			
		||||
    @torch.no_grad()
 | 
			
		||||
    def set_image(
 | 
			
		||||
        self,
 | 
			
		||||
 | 
			
		||||
@ -103,6 +103,23 @@ class SAM2VideoPredictor(SAM2Base):
 | 
			
		||||
        self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
 | 
			
		||||
        return inference_state
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
 | 
			
		||||
        """
 | 
			
		||||
        Load a pretrained model from the Hugging Face hub.
 | 
			
		||||
 | 
			
		||||
        Arguments:
 | 
			
		||||
          model_id (str): The Hugging Face repository ID.
 | 
			
		||||
          **kwargs: Additional arguments to pass to the model constructor.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
          (SAM2VideoPredictor): The loaded model.
 | 
			
		||||
        """
 | 
			
		||||
        from sam2.build_sam import build_sam2_video_predictor_hf
 | 
			
		||||
 | 
			
		||||
        sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
 | 
			
		||||
        return cls(sam_model)
 | 
			
		||||
 | 
			
		||||
    def _obj_id_to_idx(self, inference_state, obj_id):
 | 
			
		||||
        """Map client-side object id to model-side object index."""
 | 
			
		||||
        obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user