pytorch3d/tests/bm_iou_box3d.py
Nikhila Ravi ff8d4762f4 (new) CUDA IoU for 3D boxes
Summary: CUDA implementation of 3D bounding box overlap calculation.

Reviewed By: gkioxari

Differential Revision: D31157919

fbshipit-source-id: 5dc89805d01fef2d6779f00a33226131e39c43ed
2021-09-29 18:49:09 -07:00

55 lines
1.6 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from itertools import product
from fvcore.common.benchmark import benchmark
from test_iou_box3d import TestIoU3D
def bm_iou_box3d() -> None:
# Realistic use cases
N = [30, 100]
M = [5, 10, 100]
kwargs_list = []
test_cases = product(N, M)
for case in test_cases:
n, m = case
kwargs_list.append({"N": n, "M": m, "device": "cuda:0"})
benchmark(TestIoU3D.iou, "3D_IOU", kwargs_list, warmup_iters=1)
# Comparison of C++/CUDA
kwargs_list = []
N = [1, 4, 8, 16]
devices = ["cpu", "cuda:0"]
test_cases = product(N, N, devices)
for case in test_cases:
n, m, d = case
kwargs_list.append({"N": n, "M": m, "device": d})
benchmark(TestIoU3D.iou, "3D_IOU", kwargs_list, warmup_iters=1)
# Naive PyTorch
N = [1, 4]
kwargs_list = []
test_cases = product(N, N)
for case in test_cases:
n, m = case
kwargs_list.append({"N": n, "M": m, "device": "cuda:0"})
benchmark(TestIoU3D.iou_naive, "3D_IOU_NAIVE", kwargs_list, warmup_iters=1)
# Sampling based method
num_samples = [2000, 5000]
kwargs_list = []
test_cases = product(N, N, num_samples)
for case in test_cases:
n, m, s = case
kwargs_list.append({"N": n, "M": m, "num_samples": s, "device": "cuda:0"})
benchmark(TestIoU3D.iou_sampling, "3D_IOU_SAMPLING", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_iou_box3d()