mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Adds the ability to have different learning rates for different parts of the model. The trainable parts of the implicitron have a new member param_groups: dictionary where keys are names of individual parameters, or module’s members and values are the parameter group where the parameter/member will be sorted to. "self" key is used to denote the parameter group at the module level. Possible keys, including the "self" key do not have to be defined. By default all parameters are put into "default" parameter group and have the learning rate defined in the optimizer, it can be overriden at the: - module level with “self” key, all the parameters and child module s parameters will be put to that parameter group - member level, which is the same as if the `param_groups` in that member has key=“self” and value equal to that parameter group. This is useful if members do not have `param_groups`, for example torch.nn.Linear. - parameter level, parameter with the same name as the key will be put to that parameter group. And in the optimizer factory, parameters and their learning rates are recursively gathered. Reviewed By: shapovalov Differential Revision: D40145802 fbshipit-source-id: 631c02b8d79ee1c0eb4c31e6e42dbd3d2882078a
163 lines
6.8 KiB
Python
163 lines
6.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
|
|
|
|
from ..impl.optimizer_factory import ImplicitronOptimizerFactory
|
|
|
|
internal = os.environ.get("FB_TEST", False)
|
|
|
|
|
|
class TestOptimizerFactory(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
torch.manual_seed(42)
|
|
expand_args_fields(ImplicitronOptimizerFactory)
|
|
|
|
def _get_param_groups(self, model):
|
|
default_cfg = get_default_args(ImplicitronOptimizerFactory)
|
|
factory = ImplicitronOptimizerFactory(default_cfg)
|
|
return factory._get_param_groups(model)
|
|
|
|
def _assert_allin(self, a, param_groups, key):
|
|
with self.subTest(f"Testing key {key}"):
|
|
b = param_groups[key]
|
|
for el in a:
|
|
if el not in b:
|
|
raise ValueError(
|
|
f"Element {el}\n\n from:\n\n {a}\n\n not in:\n\n {b}\n\n."
|
|
+ f" Full param groups = \n\n{param_groups}"
|
|
)
|
|
for el in b:
|
|
if el not in a:
|
|
raise ValueError(
|
|
f"Element {el}\n\n from:\n\n {b}\n\n not in:\n\n {a}\n\n."
|
|
+ f" Full param groups = \n\n{param_groups}"
|
|
)
|
|
|
|
def test_default_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc])
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pb, pc], param_groups, "default")
|
|
|
|
def test_member_overrides_default_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb")
|
|
|
|
def test_self_overrides_member_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb], param_groups={"self": "pb_self"})
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb_self")
|
|
assert len(param_groups["pb_member"]) == 0, param_groups
|
|
|
|
def test_param_overrides_self_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(
|
|
params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}
|
|
)
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb_self")
|
|
assert len(param_groups["pb_member"]) == 0, param_groups
|
|
|
|
def test_no_param_groups_defined(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc])
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pb, pc], param_groups, "default")
|
|
|
|
def test_tree_param_groups_defined(self):
|
|
"""
|
|
Test generic tree assignment.
|
|
|
|
A0
|
|
|---------------------------
|
|
| | |
|
|
Bb M J-
|
|
|----- |-------
|
|
| | | |
|
|
C Ddg K Ll
|
|
|--------------
|
|
| | | |
|
|
E4 Ff G H-
|
|
|
|
All nodes have one parameter. Character next to the capital
|
|
letter means they have added something to their `parameter_groups`:
|
|
- small letter same as capital means self is set to that letter
|
|
- small letter different then capital means that member is set
|
|
(the one that is named like that)
|
|
- number means parameter's parameter_group is set like that
|
|
- "-" means it does not have `parameter_groups` member
|
|
"""
|
|
p = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(12)]
|
|
L = Node(params=[p[11]], param_groups={"self": "l"})
|
|
K = Node(params=[p[10]], param_groups={})
|
|
J = Node(params=[p[9]], param_groups=None, children=[K, L])
|
|
M = Node(params=[p[8]], param_groups={})
|
|
|
|
E = Node(params=[p[4]], param_groups={"p0": "4"})
|
|
F = Node(params=[p[5]], param_groups={"self": "f"})
|
|
G = Node(params=[p[6]], param_groups={})
|
|
H = Node(params=[p[7]], param_groups=None)
|
|
|
|
D = Node(
|
|
params=[p[3]], param_groups={"self": "d", "m2": "g"}, children=[E, F, G, H]
|
|
)
|
|
C = Node(params=[p[2]], param_groups={})
|
|
|
|
B = Node(params=[p[1]], param_groups={"self": "b"}, children=[C, D])
|
|
|
|
A = Node(params=[p[0]], param_groups={"p0": "0"}, children=[B, M, J])
|
|
|
|
param_groups = self._get_param_groups(A)
|
|
|
|
# if parts of the group belong to two different categories assert is repeated
|
|
# parameter level
|
|
self._assert_allin([p[0]], param_groups, "0")
|
|
self._assert_allin([p[4]], param_groups, "4")
|
|
# self level
|
|
self._assert_allin([p[5]], param_groups, "f")
|
|
self._assert_allin([p[11]], param_groups, "l")
|
|
self._assert_allin([p[2], p[1]], param_groups, "b")
|
|
self._assert_allin([p[7], p[3]], param_groups, "d")
|
|
# member level
|
|
self._assert_allin([p[6]], param_groups, "g")
|
|
# inherit level
|
|
self._assert_allin([p[7], p[3]], param_groups, "d")
|
|
self._assert_allin([p[2], p[1]], param_groups, "b")
|
|
# default level
|
|
self._assert_allin([p[8], p[9], p[10]], param_groups, "default")
|
|
|
|
|
|
class Node(torch.nn.Module):
|
|
def __init__(self, children=(), params=(), param_groups=None):
|
|
super().__init__()
|
|
for i, child in enumerate(children):
|
|
self.add_module("m" + str(i), child)
|
|
for i, param in enumerate(params):
|
|
setattr(self, "p" + str(i), param)
|
|
if param_groups is not None:
|
|
self.param_groups = param_groups
|
|
|
|
def __str__(self):
|
|
return (
|
|
"modules:\n" + str(self._modules) + "\nparameters\n" + str(self._parameters)
|
|
)
|