mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Remove the dataset's need to provide the task type. Reviewed By: davnov134, kjchalup Differential Revision: D38314000 fbshipit-source-id: 3805d885b5d4528abdc78c0da03247edb9abf3f7
112 lines
3.2 KiB
Python
112 lines
3.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import logging
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import Iterator, Optional
|
|
|
|
from iopath.common.file_io import PathManager
|
|
from pytorch3d.implicitron.tools.config import registry, ReplaceableBase
|
|
from pytorch3d.renderer.cameras import CamerasBase
|
|
|
|
from .dataset_base import DatasetBase
|
|
|
|
|
|
@dataclass
|
|
class DatasetMap:
|
|
"""
|
|
A collection of datasets for implicitron.
|
|
|
|
Members:
|
|
|
|
train: a dataset for training
|
|
val: a dataset for validating during training
|
|
test: a dataset for final evaluation
|
|
"""
|
|
|
|
train: Optional[DatasetBase]
|
|
val: Optional[DatasetBase]
|
|
test: Optional[DatasetBase]
|
|
|
|
def __getitem__(self, split: str) -> Optional[DatasetBase]:
|
|
"""
|
|
Get one of the datasets by key (name of data split)
|
|
"""
|
|
if split not in ["train", "val", "test"]:
|
|
raise ValueError(f"{split} was not a valid split name (train/val/test)")
|
|
return getattr(self, split)
|
|
|
|
def iter_datasets(self) -> Iterator[DatasetBase]:
|
|
"""
|
|
Iterator over all datasets.
|
|
"""
|
|
if self.train is not None:
|
|
yield self.train
|
|
if self.val is not None:
|
|
yield self.val
|
|
if self.test is not None:
|
|
yield self.test
|
|
|
|
|
|
class DatasetMapProviderBase(ReplaceableBase):
|
|
"""
|
|
Base class for a provider of training / validation and testing
|
|
dataset objects.
|
|
"""
|
|
|
|
def get_dataset_map(self) -> DatasetMap:
|
|
"""
|
|
Returns:
|
|
An object containing the torch.Dataset objects in train/val/test fields.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def get_all_train_cameras(self) -> Optional[CamerasBase]:
|
|
"""
|
|
If the data is all for a single scene, returns a list
|
|
of the known training cameras for that scene, which is
|
|
used for evaluating the difficulty of the unknown
|
|
cameras. Otherwise return None.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
@registry.register
|
|
class PathManagerFactory(ReplaceableBase):
|
|
"""
|
|
Base class and default implementation of a tool which dataset_map_provider implementations
|
|
may use to construct a path manager if needed.
|
|
|
|
Args:
|
|
silence_logs: Whether to reduce log output from iopath library.
|
|
"""
|
|
|
|
silence_logs: bool = True
|
|
|
|
def get(self) -> Optional[PathManager]:
|
|
"""
|
|
Makes a PathManager if needed.
|
|
For open source users, this function should always return None.
|
|
Internally, this allows manifold access.
|
|
"""
|
|
if os.environ.get("INSIDE_RE_WORKER", False):
|
|
return None
|
|
|
|
try:
|
|
from iopath.fb.manifold import ManifoldPathHandler
|
|
except ImportError:
|
|
return None
|
|
|
|
if self.silence_logs:
|
|
logging.getLogger("iopath.fb.manifold").setLevel(logging.CRITICAL)
|
|
logging.getLogger("iopath.common.file_io").setLevel(logging.CRITICAL)
|
|
|
|
path_manager = PathManager()
|
|
path_manager.register_handler(ManifoldPathHandler())
|
|
|
|
return path_manager
|