takiyu f358b9b14d Fix squared distance for CPU impl. (#83)
Summary:
`PointLineDistanceForward()` should return squared distance. However, it seems that it returned non-squared distance when `v0` was near by `v1` in CPU implementation.
Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/83

Reviewed By: bottler

Differential Revision: D20097181

Pulled By: nikhilaravi

fbshipit-source-id: 7ea851c0837ab89364e42d283c999df21ff5ff02
2020-02-25 14:00:00 -08:00

398 lines
14 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#include <ATen/ATen.h>
#include <algorithm>
#include <type_traits>
#include "vec2.h"
#include "vec3.h"
// Set epsilon for preventing floating point errors and division by 0.
const auto kEpsilon = 1e-30;
// Determines whether a point p is on the right side of a 2D line segment
// given by the end points v0, v1.
//
// Args:
// p: vec2 Coordinates of a point.
// v0, v1: vec2 Coordinates of the end points of the edge.
//
// Returns:
// area: The signed area of the parallelogram given by the vectors
// A = p - v0
// B = v1 - v0
//
// v1 ________
// /\ /
// A / \ /
// / \ /
// v0 /______\/
// B p
//
// The area can also be interpreted as the cross product A x B.
// If the sign of the area is positive, the point p is on the
// right side of the edge. Negative area indicates the point is on
// the left side of the edge. i.e. for an edge v1 - v0:
//
// v1
// /
// /
// - / +
// /
// /
// v0
//
template <typename T>
T EdgeFunctionForward(const vec2<T>& p, const vec2<T>& v0, const vec2<T>& v1) {
const T edge = (p.x - v0.x) * (v1.y - v0.y) - (p.y - v0.y) * (v1.x - v0.x);
return edge;
}
// Backward pass for the edge function returning partial dervivatives for each
// of the input points.
//
// Args:
// p: vec2 Coordinates of a point.
// v0, v1: vec2 Coordinates of the end points of the edge.
// grad_edge: Upstream gradient for output from edge function.
//
// Returns:
// tuple of gradients for each of the input points:
// (vec2<T> d_edge_dp, vec2<T> d_edge_dv0, vec2<T> d_edge_dv1)
//
template <typename T>
inline std::tuple<vec2<T>, vec2<T>, vec2<T>> EdgeFunctionBackward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const T grad_edge) {
const vec2<T> dedge_dp(v1.y - v0.y, v0.x - v1.x);
const vec2<T> dedge_dv0(p.y - v1.y, v1.x - p.x);
const vec2<T> dedge_dv1(v0.y - p.y, p.x - v0.x);
return std::make_tuple(
grad_edge * dedge_dp, grad_edge * dedge_dv0, grad_edge * dedge_dv1);
}
// The forward pass for computing the barycentric coordinates of a point
// relative to a triangle.
// Ref:
// https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
//
// Args:
// p: Coordinates of a point.
// v0, v1, v2: Coordinates of the triangle vertices.
//
// Returns
// bary: (w0, w1, w2) barycentric coordinates in the range [0, 1].
//
template <typename T>
vec3<T> BarycentricCoordinatesForward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const vec2<T>& v2) {
const T area = EdgeFunctionForward(v2, v0, v1) + kEpsilon;
const T w0 = EdgeFunctionForward(p, v1, v2) / area;
const T w1 = EdgeFunctionForward(p, v2, v0) / area;
const T w2 = EdgeFunctionForward(p, v0, v1) / area;
return vec3<T>(w0, w1, w2);
}
// The backward pass for computing the barycentric coordinates of a point
// relative to a triangle.
//
// Args:
// p: Coordinates of a point.
// v0, v1, v2: (x, y) coordinates of the triangle vertices.
// grad_bary_upstream: vec3<T> Upstream gradient for each of the
// barycentric coordaintes [grad_w0, grad_w1, grad_w2].
//
// Returns
// tuple of gradients for each of the triangle vertices:
// (vec2<T> grad_v0, vec2<T> grad_v1, vec2<T> grad_v2)
//
template <typename T>
inline std::tuple<vec2<T>, vec2<T>, vec2<T>, vec2<T>> BarycentricCoordsBackward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const vec2<T>& v2,
const vec3<T>& grad_bary_upstream) {
const T area = EdgeFunctionForward(v2, v0, v1) + kEpsilon;
const T area2 = pow(area, 2.0f);
const T area_inv = 1.0f / area;
const T e0 = EdgeFunctionForward(p, v1, v2);
const T e1 = EdgeFunctionForward(p, v2, v0);
const T e2 = EdgeFunctionForward(p, v0, v1);
const T grad_w0 = grad_bary_upstream.x;
const T grad_w1 = grad_bary_upstream.y;
const T grad_w2 = grad_bary_upstream.z;
// Calculate component of the gradient from each of w0, w1 and w2.
// e.g. for w0:
// dloss/dw0_v = dl/dw0 * dw0/dw0_top * dw0_top/dv
// + dl/dw0 * dw0/dw0_bot * dw0_bot/dv
const T dw0_darea = -e0 / (area2);
const T dw0_e0 = area_inv;
const T dloss_d_w0area = grad_w0 * dw0_darea;
const T dloss_e0 = grad_w0 * dw0_e0;
auto de0_dv = EdgeFunctionBackward(p, v1, v2, dloss_e0);
auto dw0area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w0area);
const vec2<T> dw0_p = std::get<0>(de0_dv);
const vec2<T> dw0_dv0 = std::get<1>(dw0area_dv);
const vec2<T> dw0_dv1 = std::get<1>(de0_dv) + std::get<2>(dw0area_dv);
const vec2<T> dw0_dv2 = std::get<2>(de0_dv) + std::get<0>(dw0area_dv);
const T dw1_darea = -e1 / (area2);
const T dw1_e1 = area_inv;
const T dloss_d_w1area = grad_w1 * dw1_darea;
const T dloss_e1 = grad_w1 * dw1_e1;
auto de1_dv = EdgeFunctionBackward(p, v2, v0, dloss_e1);
auto dw1area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w1area);
const vec2<T> dw1_p = std::get<0>(de1_dv);
const vec2<T> dw1_dv0 = std::get<2>(de1_dv) + std::get<1>(dw1area_dv);
const vec2<T> dw1_dv1 = std::get<2>(dw1area_dv);
const vec2<T> dw1_dv2 = std::get<1>(de1_dv) + std::get<0>(dw1area_dv);
const T dw2_darea = -e2 / (area2);
const T dw2_e2 = area_inv;
const T dloss_d_w2area = grad_w2 * dw2_darea;
const T dloss_e2 = grad_w2 * dw2_e2;
auto de2_dv = EdgeFunctionBackward(p, v0, v1, dloss_e2);
auto dw2area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w2area);
const vec2<T> dw2_p = std::get<0>(de2_dv);
const vec2<T> dw2_dv0 = std::get<1>(de2_dv) + std::get<1>(dw2area_dv);
const vec2<T> dw2_dv1 = std::get<2>(de2_dv) + std::get<2>(dw2area_dv);
const vec2<T> dw2_dv2 = std::get<0>(dw2area_dv);
const vec2<T> dbary_p = dw0_p + dw1_p + dw2_p;
const vec2<T> dbary_dv0 = dw0_dv0 + dw1_dv0 + dw2_dv0;
const vec2<T> dbary_dv1 = dw0_dv1 + dw1_dv1 + dw2_dv1;
const vec2<T> dbary_dv2 = dw0_dv2 + dw1_dv2 + dw2_dv2;
return std::make_tuple(dbary_p, dbary_dv0, dbary_dv1, dbary_dv2);
}
// Forward pass for applying perspective correction to barycentric coordinates.
//
// Args:
// bary: Screen-space barycentric coordinates for a point
// z0, z1, z2: Camera-space z-coordinates of the triangle vertices
//
// Returns
// World-space barycentric coordinates
//
template <typename T>
inline vec3<T> BarycentricPerspectiveCorrectionForward(
const vec3<T>& bary,
const T z0,
const T z1,
const T z2) {
const T w0_top = bary.x * z1 * z2;
const T w1_top = bary.y * z0 * z2;
const T w2_top = bary.z * z0 * z1;
const T denom = w0_top + w1_top + w2_top;
const T w0 = w0_top / denom;
const T w1 = w1_top / denom;
const T w2 = w2_top / denom;
return vec3<T>(w0, w1, w2);
}
// Backward pass for applying perspective correction to barycentric coordinates.
//
// Args:
// bary: Screen-space barycentric coordinates for a point
// z0, z1, z2: Camera-space z-coordinates of the triangle vertices
// grad_out: Upstream gradient of the loss with respect to the corrected
// barycentric coordinates.
//
// Returns a tuple of:
// grad_bary: Downstream gradient of the loss with respect to the the
// uncorrected barycentric coordinates.
// grad_z0, grad_z1, grad_z2: Downstream gradient of the loss with respect
// to the z-coordinates of the triangle verts
template <typename T>
inline std::tuple<vec3<T>, T, T, T> BarycentricPerspectiveCorrectionBackward(
const vec3<T>& bary,
const T z0,
const T z1,
const T z2,
const vec3<T>& grad_out) {
// Recompute forward pass
const T w0_top = bary.x * z1 * z2;
const T w1_top = bary.y * z0 * z2;
const T w2_top = bary.z * z0 * z1;
const T denom = w0_top + w1_top + w2_top;
// Now do backward pass
const T grad_denom_top =
-w0_top * grad_out.x - w1_top * grad_out.y - w2_top * grad_out.z;
const T grad_denom = grad_denom_top / (denom * denom);
const T grad_w0_top = grad_denom + grad_out.x / denom;
const T grad_w1_top = grad_denom + grad_out.y / denom;
const T grad_w2_top = grad_denom + grad_out.z / denom;
const T grad_bary_x = grad_w0_top * z1 * z2;
const T grad_bary_y = grad_w1_top * z0 * z2;
const T grad_bary_z = grad_w2_top * z0 * z1;
const vec3<T> grad_bary(grad_bary_x, grad_bary_y, grad_bary_z);
const T grad_z0 = grad_w1_top * bary.y * z2 + grad_w2_top * bary.z * z1;
const T grad_z1 = grad_w0_top * bary.x * z2 + grad_w2_top * bary.z * z0;
const T grad_z2 = grad_w0_top * bary.x * z1 + grad_w1_top * bary.y * z0;
return std::make_tuple(grad_bary, grad_z0, grad_z1, grad_z2);
}
// Calculate minimum distance between a line segment (v1 - v0) and point p.
//
// Args:
// p: Coordinates of a point.
// v0, v1: Coordinates of the end points of the line segment.
//
// Returns:
// non-square distance of the point to the line.
//
// Consider the line extending the segment - this can be parameterized as:
// v0 + t (v1 - v0).
//
// First find the projection of point p onto the line. It falls where:
// t = [(p - v0) . (v1 - v0)] / |v1 - v0|^2
// where . is the dot product.
//
// The parameter t is clamped from [0, 1] to handle points outside the
// segment (v1 - v0).
//
// Once the projection of the point on the segment is known, the distance from
// p to the projection gives the minimum distance to the segment.
//
template <typename T>
T PointLineDistanceForward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1) {
const vec2<T> v1v0 = v1 - v0;
const T l2 = dot(v1v0, v1v0);
if (l2 <= kEpsilon) {
return dot(p - v1, p - v1);
}
const T t = dot(v1v0, p - v0) / l2;
const T tt = std::min(std::max(t, 0.00f), 1.00f);
const vec2<T> p_proj = v0 + tt * v1v0;
return dot(p - p_proj, p - p_proj);
}
// Backward pass for point to line distance in 2D.
//
// Args:
// p: Coordinates of a point.
// v0, v1: Coordinates of the end points of the line segment.
// grad_dist: Upstream gradient for the distance.
//
// Returns:
// tuple of gradients for each of the input points:
// (vec2<T> grad_p, vec2<T> grad_v0, vec2<T> grad_v1)
//
template <typename T>
inline std::tuple<vec2<T>, vec2<T>, vec2<T>> PointLineDistanceBackward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const T& grad_dist) {
// Redo some of the forward pass calculations.
const vec2<T> v1v0 = v1 - v0;
const vec2<T> pv0 = p - v0;
const T t_bot = dot(v1v0, v1v0);
const T t_top = dot(v1v0, pv0);
const T t = t_top / t_bot;
const T tt = std::min(std::max(t, 0.00f), 1.00f);
const vec2<T> p_proj = (1.0f - tt) * v0 + tt * v1;
const vec2<T> grad_v0 = grad_dist * (1.0f - tt) * 2.0f * (p_proj - p);
const vec2<T> grad_v1 = grad_dist * tt * 2.0f * (p_proj - p);
const vec2<T> grad_p = -1.0f * grad_dist * 2.0f * (p_proj - p);
return std::make_tuple(grad_p, grad_v0, grad_v1);
}
// The forward pass for calculating the shortest distance between a point
// and a triangle.
// Ref: https://www.randygaul.net/2014/07/23/distance-point-to-line-segment/
//
// Args:
// p: Coordinates of a point.
// v0, v1, v2: Coordinates of the three triangle vertices.
//
// Returns:
// shortest absolute distance from a point to a triangle.
//
//
template <typename T>
T PointTriangleDistanceForward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const vec2<T>& v2) {
// Compute distance of point to 3 edges of the triangle and return the
// minimum value.
const T e01_dist = PointLineDistanceForward(p, v0, v1);
const T e02_dist = PointLineDistanceForward(p, v0, v2);
const T e12_dist = PointLineDistanceForward(p, v1, v2);
const T edge_dist = std::min(std::min(e01_dist, e02_dist), e12_dist);
return edge_dist;
}
// Backward pass for point triangle distance.
//
// Args:
// p: Coordinates of a point.
// v0, v1, v2: Coordinates of the three triangle vertices.
// grad_dist: Upstream gradient for the distance.
//
// Returns:
// tuple of gradients for each of the triangle vertices:
// (vec2<T> grad_v0, vec2<T> grad_v1, vec2<T> grad_v2)
//
template <typename T>
inline std::tuple<vec2<T>, vec2<T>, vec2<T>, vec2<T>>
PointTriangleDistanceBackward(
const vec2<T>& p,
const vec2<T>& v0,
const vec2<T>& v1,
const vec2<T>& v2,
const T& grad_dist) {
// Compute distance to all 3 edges of the triangle.
const T e01_dist = PointLineDistanceForward(p, v0, v1);
const T e02_dist = PointLineDistanceForward(p, v0, v2);
const T e12_dist = PointLineDistanceForward(p, v1, v2);
// Initialize output tensors.
vec2<T> grad_v0(0.0f, 0.0f);
vec2<T> grad_v1(0.0f, 0.0f);
vec2<T> grad_v2(0.0f, 0.0f);
vec2<T> grad_p(0.0f, 0.0f);
// Find which edge is the closest and return PointLineDistanceBackward for
// that edge.
if (e01_dist <= e02_dist && e01_dist <= e12_dist) {
// Closest edge is v1 - v0.
auto grad_e01 = PointLineDistanceBackward(p, v0, v1, grad_dist);
grad_p = std::get<0>(grad_e01);
grad_v0 = std::get<1>(grad_e01);
grad_v1 = std::get<2>(grad_e01);
} else if (e02_dist <= e01_dist && e02_dist <= e12_dist) {
// Closest edge is v2 - v0.
auto grad_e02 = PointLineDistanceBackward(p, v0, v2, grad_dist);
grad_p = std::get<0>(grad_e02);
grad_v0 = std::get<1>(grad_e02);
grad_v2 = std::get<2>(grad_e02);
} else if (e12_dist <= e01_dist && e12_dist <= e02_dist) {
// Closest edge is v2 - v1.
auto grad_e12 = PointLineDistanceBackward(p, v1, v2, grad_dist);
grad_p = std::get<0>(grad_e12);
grad_v1 = std::get<1>(grad_e12);
grad_v2 = std::get<2>(grad_e12);
}
return std::make_tuple(grad_p, grad_v0, grad_v1, grad_v2);
}