mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: When textures are set on `Meshes` we need to check if the dimensions actually match that of the verts/faces in the mesh. There was a github issue where someone tried to set the attribute after construction of the `Meshes` object and ran into an error when trying to sample textures. The desired usage is to initialize the class with the textures (not set an attribute afterwards) but in any case we need to check the dimensions match before sampling textures. Reviewed By: bottler Differential Revision: D29020249 fbshipit-source-id: 9fb8a5368b83c9ec53652df92b96fc8b2613f591
1058 lines
42 KiB
Python
1058 lines
42 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from common_testing import TestCaseMixin
|
|
from pytorch3d.renderer.mesh.rasterizer import Fragments
|
|
from pytorch3d.renderer.mesh.textures import (
|
|
TexturesAtlas,
|
|
TexturesUV,
|
|
TexturesVertex,
|
|
_list_to_padded_wrapper,
|
|
)
|
|
from pytorch3d.renderer.mesh.utils import (
|
|
Rectangle,
|
|
pack_rectangles,
|
|
pack_unique_rectangles,
|
|
)
|
|
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
|
|
from test_meshes import init_mesh
|
|
|
|
|
|
def tryindex(self, index, tex, meshes, source):
|
|
tex2 = tex[index]
|
|
meshes2 = meshes[index]
|
|
tex_from_meshes = meshes2.textures
|
|
for item in source:
|
|
basic = source[item][index]
|
|
from_texture = getattr(tex2, item + "_padded")()
|
|
from_meshes = getattr(tex_from_meshes, item + "_padded")()
|
|
if isinstance(index, int):
|
|
basic = basic[None]
|
|
|
|
if len(basic) == 0:
|
|
self.assertEqual(len(from_texture), 0)
|
|
self.assertEqual(len(from_meshes), 0)
|
|
else:
|
|
self.assertClose(basic, from_texture)
|
|
self.assertClose(basic, from_meshes)
|
|
self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
|
|
item_list = getattr(tex_from_meshes, item + "_list")()
|
|
self.assertEqual(basic.shape[0], len(item_list))
|
|
for i, elem in enumerate(item_list):
|
|
self.assertClose(elem, basic[i])
|
|
|
|
|
|
class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
|
|
def test_sample_vertex_textures(self):
|
|
"""
|
|
This tests both interpolate_vertex_colors as well as
|
|
interpolate_face_attributes.
|
|
"""
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
vert_tex = torch.tensor(
|
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
|
|
)
|
|
verts_features = vert_tex
|
|
tex = TexturesVertex(verts_features=[verts_features])
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
expected_vals = torch.tensor(
|
|
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
# sample_textures calls interpolate_vertex_colors
|
|
texels = mesh.sample_textures(fragments)
|
|
self.assertTrue(torch.allclose(texels, expected_vals[None, :]))
|
|
|
|
def test_sample_vertex_textures_grad(self):
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
vert_tex = torch.tensor(
|
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
|
|
dtype=torch.float32,
|
|
requires_grad=True,
|
|
)
|
|
verts_features = vert_tex
|
|
tex = TexturesVertex(verts_features=[verts_features])
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
grad_vert_tex = torch.tensor(
|
|
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
|
|
dtype=torch.float32,
|
|
)
|
|
texels = mesh.sample_textures(fragments)
|
|
texels.sum().backward()
|
|
self.assertTrue(hasattr(vert_tex, "grad"))
|
|
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))
|
|
|
|
def test_textures_vertex_init_fail(self):
|
|
# Incorrect sized tensors
|
|
with self.assertRaisesRegex(ValueError, "verts_features"):
|
|
TexturesVertex(verts_features=torch.rand(size=(5, 10)))
|
|
|
|
# Not a list or a tensor
|
|
with self.assertRaisesRegex(ValueError, "verts_features"):
|
|
TexturesVertex(verts_features=(1, 1, 1))
|
|
|
|
def test_faces_verts_textures(self):
|
|
device = torch.device("cuda:0")
|
|
verts = torch.randn((2, 4, 3), dtype=torch.float32, device=device)
|
|
faces = torch.tensor(
|
|
[[[2, 1, 0], [3, 1, 0]], [[1, 3, 0], [2, 1, 3]]],
|
|
dtype=torch.int64,
|
|
device=device,
|
|
)
|
|
|
|
# define TexturesVertex
|
|
verts_texture = torch.rand(verts.shape)
|
|
textures = TexturesVertex(verts_features=verts_texture)
|
|
|
|
# compute packed faces
|
|
ff = faces.unbind(0)
|
|
faces_packed = torch.cat([ff[0], ff[1] + verts.shape[1]])
|
|
|
|
# face verts textures
|
|
faces_verts_texts = textures.faces_verts_textures_packed(faces_packed)
|
|
|
|
verts_texts_packed = torch.cat(verts_texture.unbind(0))
|
|
faces_verts_texts_packed = verts_texts_packed[faces_packed]
|
|
|
|
self.assertClose(faces_verts_texts_packed, faces_verts_texts)
|
|
|
|
def test_clone(self):
|
|
tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
|
|
tex.verts_features_list()
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(
|
|
tex._verts_features_padded, tex_cloned._verts_features_padded
|
|
)
|
|
self.assertClose(tex._verts_features_padded, tex_cloned._verts_features_padded)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
|
|
for i in range(tex._N):
|
|
self.assertSeparate(
|
|
tex._verts_features_list[i], tex_cloned._verts_features_list[i]
|
|
)
|
|
self.assertClose(
|
|
tex._verts_features_list[i], tex_cloned._verts_features_list[i]
|
|
)
|
|
|
|
def test_detach(self):
|
|
tex = TexturesVertex(
|
|
verts_features=torch.rand(size=(10, 100, 128), requires_grad=True)
|
|
)
|
|
tex.verts_features_list()
|
|
tex_detached = tex.detach()
|
|
self.assertFalse(tex_detached._verts_features_padded.requires_grad)
|
|
self.assertClose(
|
|
tex_detached._verts_features_padded, tex._verts_features_padded
|
|
)
|
|
for i in range(tex._N):
|
|
self.assertClose(
|
|
tex._verts_features_list[i], tex_detached._verts_features_list[i]
|
|
)
|
|
self.assertFalse(tex_detached._verts_features_list[i].requires_grad)
|
|
|
|
def test_extend(self):
|
|
B = 10
|
|
mesh = init_mesh(B, 30, 50)
|
|
V = mesh._V
|
|
tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
|
|
)
|
|
N = 20
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
self.assertClose(
|
|
tex_init.verts_features_list()[i],
|
|
new_tex.verts_features_list()[i * N + n],
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate(
|
|
[tex_init.verts_features_padded(), new_tex.verts_features_padded()]
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
num_verts_per_mesh = [9, 6]
|
|
D = 10
|
|
verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
|
|
verts_features_packed = list_to_packed(verts_features_list)[0]
|
|
verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
|
|
tex = TexturesVertex(verts_features=verts_features_list)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_verts_per_mesh = num_verts_per_mesh
|
|
verts_packed = tex1.verts_features_packed()
|
|
verts_verts_list = tex1.verts_features_list()
|
|
verts_padded = tex1.verts_features_padded()
|
|
|
|
for f1, f2 in zip(verts_verts_list, verts_features_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
|
|
self.assertTrue(verts_padded.shape == (2, 9, D))
|
|
|
|
# Case where num_verts_per_mesh is not set and textures
|
|
# are initialized with a padded tensor.
|
|
tex2 = TexturesVertex(verts_features=verts_padded)
|
|
verts_packed = tex2.verts_features_packed()
|
|
verts_list = tex2.verts_features_list()
|
|
|
|
# Packed is just flattened padded as num_verts_per_mesh
|
|
# has not been provided.
|
|
self.assertTrue(verts_packed.shape == (9 * 2, D))
|
|
|
|
for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
|
|
n = num_verts_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
source = {"verts_features": torch.randn(size=(N, V, 128))}
|
|
tex = TexturesVertex(verts_features=source["verts_features"])
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, 10, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|
|
|
|
def test_sample_textures_error(self):
|
|
N = 5
|
|
V = 20
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, 10, 3), high=V)
|
|
tex = TexturesVertex(verts_features=torch.randn(size=(N, 10, 128)))
|
|
|
|
# Verts features have the wrong number of verts
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
# Verts features have the wrong batch dim
|
|
tex = TexturesVertex(verts_features=torch.randn(size=(1, V, 128)))
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
meshes = Meshes(verts=verts, faces=faces)
|
|
meshes.textures = tex
|
|
|
|
# Cannot use the texture attribute set on meshes for sampling
|
|
# textures if the dimensions don't match
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
meshes.sample_textures(None)
|
|
|
|
|
|
class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
|
|
def test_sample_texture_atlas(self):
|
|
N, F, R = 1, 2, 2
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
faces_atlas = torch.rand(size=(N, F, R, R, 3))
|
|
tex = TexturesAtlas(atlas=faces_atlas)
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
expected_vals = torch.tensor(
|
|
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
|
|
)
|
|
expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
|
|
expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
|
|
expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]
|
|
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
texels = mesh.textures.sample_textures(fragments)
|
|
self.assertTrue(torch.allclose(texels, expected_vals))
|
|
|
|
def test_textures_atlas_grad(self):
|
|
N, F, R = 1, 2, 2
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
|
|
tex = TexturesAtlas(atlas=faces_atlas)
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
texels = mesh.textures.sample_textures(fragments)
|
|
grad_tex = torch.rand_like(texels)
|
|
grad_expected = torch.zeros_like(faces_atlas)
|
|
grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
|
|
grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
|
|
texels.backward(grad_tex)
|
|
self.assertTrue(hasattr(faces_atlas, "grad"))
|
|
self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))
|
|
|
|
def test_textures_atlas_init_fail(self):
|
|
# Incorrect sized tensors
|
|
with self.assertRaisesRegex(ValueError, "atlas"):
|
|
TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))
|
|
|
|
# Not a list or a tensor
|
|
with self.assertRaisesRegex(ValueError, "atlas"):
|
|
TexturesAtlas(atlas=(1, 1, 1))
|
|
|
|
def test_faces_verts_textures(self):
|
|
device = torch.device("cuda:0")
|
|
N, F, R = 2, 2, 8
|
|
num_faces = torch.randint(low=1, high=F, size=(N,))
|
|
faces_atlas = [
|
|
torch.rand(size=(num_faces[i].item(), R, R, 3), device=device)
|
|
for i in range(N)
|
|
]
|
|
tex = TexturesAtlas(atlas=faces_atlas)
|
|
|
|
# faces_verts naive
|
|
faces_verts = []
|
|
for n in range(N):
|
|
ff = num_faces[n].item()
|
|
temp = torch.zeros(ff, 3, 3)
|
|
for f in range(ff):
|
|
t0 = faces_atlas[n][f, 0, -1] # for v0, bary = (1, 0)
|
|
t1 = faces_atlas[n][f, -1, 0] # for v1, bary = (0, 1)
|
|
t2 = faces_atlas[n][f, 0, 0] # for v2, bary = (0, 0)
|
|
temp[f, 0] = t0
|
|
temp[f, 1] = t1
|
|
temp[f, 2] = t2
|
|
faces_verts.append(temp)
|
|
faces_verts = torch.cat(faces_verts, 0)
|
|
|
|
self.assertClose(faces_verts, tex.faces_verts_textures_packed().cpu())
|
|
|
|
def test_clone(self):
|
|
tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
|
|
tex.atlas_list()
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
|
|
self.assertClose(tex._atlas_padded, tex_cloned._atlas_padded)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
|
|
for i in range(tex._N):
|
|
self.assertSeparate(tex._atlas_list[i], tex_cloned._atlas_list[i])
|
|
self.assertClose(tex._atlas_list[i], tex_cloned._atlas_list[i])
|
|
|
|
def test_detach(self):
|
|
tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3), requires_grad=True))
|
|
tex.atlas_list()
|
|
tex_detached = tex.detach()
|
|
self.assertFalse(tex_detached._atlas_padded.requires_grad)
|
|
self.assertClose(tex_detached._atlas_padded, tex._atlas_padded)
|
|
for i in range(tex._N):
|
|
self.assertFalse(tex_detached._atlas_list[i].requires_grad)
|
|
self.assertClose(tex._atlas_list[i], tex_detached._atlas_list[i])
|
|
|
|
def test_extend(self):
|
|
B = 10
|
|
mesh = init_mesh(B, 30, 50)
|
|
F = mesh._F
|
|
tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
|
|
)
|
|
N = 20
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
self.assertClose(
|
|
tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
R = 2
|
|
N = 20
|
|
num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
|
|
atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
|
|
tex = TexturesAtlas(atlas=atlas_list)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
|
|
atlas_packed = tex1.atlas_packed()
|
|
atlas_list_new = tex1.atlas_list()
|
|
atlas_padded = tex1.atlas_padded()
|
|
|
|
for f1, f2 in zip(atlas_list_new, atlas_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
sum_F = num_faces_per_mesh.sum()
|
|
max_F = num_faces_per_mesh.max().item()
|
|
self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
|
|
self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))
|
|
|
|
# Case where num_faces_per_mesh is not set and textures
|
|
# are initialized with a padded tensor.
|
|
atlas_list_padded = _list_to_padded_wrapper(atlas_list)
|
|
tex2 = TexturesAtlas(atlas=atlas_list_padded)
|
|
atlas_packed = tex2.atlas_packed()
|
|
atlas_list_new = tex2.atlas_list()
|
|
|
|
# Packed is just flattened padded as num_faces_per_mesh
|
|
# has not been provided.
|
|
self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))
|
|
|
|
for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
|
|
n = num_faces_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
F = 10
|
|
source = {"atlas": torch.randn(size=(N, F, 4, 4, 3))}
|
|
tex = TexturesAtlas(atlas=source["atlas"])
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, F, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|
|
|
|
def test_sample_textures_error(self):
|
|
N = 1
|
|
V = 20
|
|
F = 10
|
|
verts = torch.rand(size=(5, V, 3))
|
|
faces = torch.randint(size=(5, F, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces)
|
|
|
|
# TexturesAtlas have the wrong batch dim
|
|
tex = TexturesAtlas(atlas=torch.randn(size=(1, F, 4, 4, 3)))
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
# TexturesAtlas have the wrong number of faces
|
|
tex = TexturesAtlas(atlas=torch.randn(size=(N, 15, 4, 4, 3)))
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
meshes = Meshes(verts=verts, faces=faces)
|
|
meshes.textures = tex
|
|
|
|
# Cannot use the texture attribute set on meshes for sampling
|
|
# textures if the dimensions don't match
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
meshes.sample_textures(None)
|
|
|
|
|
|
class TestTexturesUV(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
|
|
def test_sample_textures_uv(self):
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
dummy_verts = torch.zeros(4, 3)
|
|
vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
|
|
face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
|
|
interpolated_uvs = torch.tensor(
|
|
[[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
|
|
)
|
|
|
|
# Create a dummy texture map
|
|
H = 2
|
|
W = 2
|
|
x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
|
|
y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
|
|
tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=pix_to_face,
|
|
dists=pix_to_face,
|
|
)
|
|
|
|
for align_corners in [True, False]:
|
|
tex = TexturesUV(
|
|
maps=tex_map,
|
|
faces_uvs=[face_uvs],
|
|
verts_uvs=[vert_uvs],
|
|
align_corners=align_corners,
|
|
)
|
|
meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
|
|
mesh_textures = meshes.textures
|
|
texels = mesh_textures.sample_textures(fragments)
|
|
|
|
# Expected output
|
|
pixel_uvs = interpolated_uvs * 2.0 - 1.0
|
|
pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
|
|
tex_map_ = torch.flip(tex_map, [1]).permute(0, 3, 1, 2)
|
|
tex_map_ = torch.cat([tex_map_, tex_map_], dim=0)
|
|
expected_out = F.grid_sample(
|
|
tex_map_, pixel_uvs, align_corners=align_corners, padding_mode="border"
|
|
)
|
|
self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
|
|
|
|
def test_textures_uv_init_fail(self):
|
|
# Maps has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "maps"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3, 4)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# faces_uvs has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "faces_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# verts_uvs has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2, 3)),
|
|
)
|
|
|
|
# verts has different batch dim to faces
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(8, 15, 2)),
|
|
)
|
|
|
|
# maps has different batch dim to faces
|
|
with self.assertRaisesRegex(ValueError, "maps"):
|
|
TexturesUV(
|
|
maps=torch.ones((8, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# verts on different device to faces
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
|
|
)
|
|
|
|
# maps on different device to faces
|
|
with self.assertRaisesRegex(ValueError, "map"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3), device="cuda"),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
def test_faces_verts_textures(self):
|
|
device = torch.device("cuda:0")
|
|
N, V, F, H, W = 2, 5, 12, 8, 8
|
|
vert_uvs = torch.rand((N, V, 2), dtype=torch.float32, device=device)
|
|
face_uvs = torch.randint(
|
|
high=V, size=(N, F, 3), dtype=torch.int64, device=device
|
|
)
|
|
maps = torch.rand((N, H, W, 3), dtype=torch.float32, device=device)
|
|
|
|
tex = TexturesUV(maps=maps, verts_uvs=vert_uvs, faces_uvs=face_uvs)
|
|
|
|
# naive faces_verts_textures
|
|
faces_verts_texs = []
|
|
for n in range(N):
|
|
temp = torch.zeros((F, 3, 3), device=device, dtype=torch.float32)
|
|
for f in range(F):
|
|
uv0 = vert_uvs[n, face_uvs[n, f, 0]]
|
|
uv1 = vert_uvs[n, face_uvs[n, f, 1]]
|
|
uv2 = vert_uvs[n, face_uvs[n, f, 2]]
|
|
|
|
idx = torch.stack((uv0, uv1, uv2), dim=0).view(1, 1, 3, 2) # 1x1x3x2
|
|
idx = idx * 2.0 - 1.0
|
|
imap = maps[n].view(1, H, W, 3).permute(0, 3, 1, 2) # 1x3xHxW
|
|
imap = torch.flip(imap, [2])
|
|
|
|
texts = torch.nn.functional.grid_sample(
|
|
imap,
|
|
idx,
|
|
align_corners=tex.align_corners,
|
|
padding_mode=tex.padding_mode,
|
|
) # 1x3x1x3
|
|
temp[f] = texts[0, :, 0, :].permute(1, 0)
|
|
faces_verts_texs.append(temp)
|
|
faces_verts_texs = torch.cat(faces_verts_texs, 0)
|
|
|
|
self.assertClose(faces_verts_texs, tex.faces_verts_textures_packed())
|
|
|
|
def test_clone(self):
|
|
tex = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
tex.faces_uvs_list()
|
|
tex.verts_uvs_list()
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
|
|
self.assertClose(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
|
|
self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
|
|
self.assertClose(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
|
|
self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
|
|
self.assertClose(tex._maps_padded, tex_cloned._maps_padded)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
|
|
for i in range(tex._N):
|
|
self.assertSeparate(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
|
|
self.assertClose(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
|
|
self.assertSeparate(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
|
|
self.assertClose(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
|
|
# tex._maps_list is not use anywhere so it's not stored. We call it explicitly
|
|
self.assertSeparate(tex.maps_list()[i], tex_cloned.maps_list()[i])
|
|
self.assertClose(tex.maps_list()[i], tex_cloned.maps_list()[i])
|
|
|
|
def test_detach(self):
|
|
tex = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3), requires_grad=True),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
tex.faces_uvs_list()
|
|
tex.verts_uvs_list()
|
|
tex_detached = tex.detach()
|
|
self.assertFalse(tex_detached._maps_padded.requires_grad)
|
|
self.assertClose(tex._maps_padded, tex_detached._maps_padded)
|
|
self.assertFalse(tex_detached._verts_uvs_padded.requires_grad)
|
|
self.assertClose(tex._verts_uvs_padded, tex_detached._verts_uvs_padded)
|
|
self.assertFalse(tex_detached._faces_uvs_padded.requires_grad)
|
|
self.assertClose(tex._faces_uvs_padded, tex_detached._faces_uvs_padded)
|
|
for i in range(tex._N):
|
|
self.assertFalse(tex_detached._verts_uvs_list[i].requires_grad)
|
|
self.assertClose(tex._verts_uvs_list[i], tex_detached._verts_uvs_list[i])
|
|
self.assertFalse(tex_detached._faces_uvs_list[i].requires_grad)
|
|
self.assertClose(tex._faces_uvs_list[i], tex_detached._faces_uvs_list[i])
|
|
# tex._maps_list is not use anywhere so it's not stored. We call it explicitly
|
|
self.assertFalse(tex_detached.maps_list()[i].requires_grad)
|
|
self.assertClose(tex.maps_list()[i], tex_detached.maps_list()[i])
|
|
|
|
def test_extend(self):
|
|
B = 5
|
|
mesh = init_mesh(B, 30, 50)
|
|
V = mesh._V
|
|
num_faces = mesh.num_faces_per_mesh()
|
|
num_verts = mesh.num_verts_per_mesh()
|
|
faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
|
|
verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
|
|
tex_uv = TexturesUV(
|
|
maps=torch.ones((B, 16, 16, 3)),
|
|
faces_uvs=faces_uvs_list,
|
|
verts_uvs=verts_uvs_list,
|
|
)
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
|
|
)
|
|
N = 2
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
new_tex_num_verts = new_mesh.num_verts_per_mesh()
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
tex_nv = new_tex_num_verts[i * N + n]
|
|
self.assertClose(
|
|
# The original textures were initialized using
|
|
# verts uvs list
|
|
tex_init.verts_uvs_list()[i],
|
|
# In the new textures, the verts_uvs are initialized
|
|
# from padded. The verts per mesh are not used to
|
|
# convert from padded to list. See TexturesUV for an
|
|
# explanation.
|
|
new_tex.verts_uvs_list()[i * N + n][:tex_nv, ...],
|
|
)
|
|
self.assertClose(
|
|
tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate(
|
|
[
|
|
tex_init.faces_uvs_padded(),
|
|
new_tex.faces_uvs_padded(),
|
|
tex_init.verts_uvs_padded(),
|
|
new_tex.verts_uvs_padded(),
|
|
tex_init.maps_padded(),
|
|
new_tex.maps_padded(),
|
|
]
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
N = 2
|
|
faces_uvs_list = [
|
|
torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
|
|
torch.tensor([[0, 1, 2], [3, 4, 5]]),
|
|
] # (N, 3, 3)
|
|
verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
|
|
|
|
num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
|
|
num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
|
|
tex = TexturesUV(
|
|
maps=torch.ones((N, 16, 16, 3)),
|
|
faces_uvs=faces_uvs_list,
|
|
verts_uvs=verts_uvs_list,
|
|
)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_faces_per_mesh = num_faces_per_mesh
|
|
tex1._num_verts_per_mesh = num_verts_per_mesh
|
|
verts_list = tex1.verts_uvs_list()
|
|
verts_padded = tex1.verts_uvs_padded()
|
|
|
|
faces_list = tex1.faces_uvs_list()
|
|
faces_padded = tex1.faces_uvs_padded()
|
|
|
|
for f1, f2 in zip(faces_list, faces_uvs_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
for f1, f2 in zip(verts_list, verts_uvs_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
self.assertTrue(faces_padded.shape == (2, 3, 3))
|
|
self.assertTrue(verts_padded.shape == (2, 9, 2))
|
|
|
|
# Case where num_faces_per_mesh is not set and faces_verts_uvs
|
|
# are initialized with a padded tensor.
|
|
tex2 = TexturesUV(
|
|
maps=torch.ones((N, 16, 16, 3)),
|
|
verts_uvs=verts_padded,
|
|
faces_uvs=faces_padded,
|
|
)
|
|
faces_list = tex2.faces_uvs_list()
|
|
verts_list = tex2.verts_uvs_list()
|
|
|
|
for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
|
|
n = num_faces_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
|
|
n = num_verts_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_to(self):
|
|
tex = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.randint(size=(5, 10, 3), high=15),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
device = torch.device("cuda:0")
|
|
tex = tex.to(device)
|
|
self.assertEqual(tex._faces_uvs_padded.device, device)
|
|
self.assertEqual(tex._verts_uvs_padded.device, device)
|
|
self.assertEqual(tex._maps_padded.device, device)
|
|
|
|
def test_mesh_to(self):
|
|
tex_cpu = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.randint(size=(5, 10, 3), high=15),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
verts = torch.rand(size=(5, 15, 3))
|
|
faces = torch.randint(size=(5, 10, 3), high=15)
|
|
mesh_cpu = Meshes(faces=faces, verts=verts, textures=tex_cpu)
|
|
cpu = torch.device("cpu")
|
|
device = torch.device("cuda:0")
|
|
tex = mesh_cpu.to(device).textures
|
|
self.assertEqual(tex._faces_uvs_padded.device, device)
|
|
self.assertEqual(tex._verts_uvs_padded.device, device)
|
|
self.assertEqual(tex._maps_padded.device, device)
|
|
self.assertEqual(tex_cpu._verts_uvs_padded.device, cpu)
|
|
|
|
self.assertEqual(tex_cpu.device, cpu)
|
|
self.assertEqual(tex.device, device)
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
F = 10
|
|
source = {
|
|
"maps": torch.rand(size=(N, 1, 1, 3)),
|
|
"faces_uvs": torch.randint(size=(N, F, 3), high=V),
|
|
"verts_uvs": torch.randn(size=(N, V, 2)),
|
|
}
|
|
tex = TexturesUV(
|
|
maps=source["maps"],
|
|
faces_uvs=source["faces_uvs"],
|
|
verts_uvs=source["verts_uvs"],
|
|
)
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, F, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|
|
|
|
def test_centers_for_image(self):
|
|
maps = torch.rand(size=(1, 257, 129, 3))
|
|
verts_uvs = torch.FloatTensor([[[0.25, 0.125], [0.5, 0.625], [0.5, 0.5]]])
|
|
faces_uvs = torch.zeros(size=(1, 0, 3), dtype=torch.int64)
|
|
tex = TexturesUV(maps=maps, faces_uvs=faces_uvs, verts_uvs=verts_uvs)
|
|
|
|
expected = torch.FloatTensor([[32, 224], [64, 96], [64, 128]])
|
|
self.assertClose(tex.centers_for_image(0), expected)
|
|
|
|
def test_sample_textures_error(self):
|
|
N = 1
|
|
V = 20
|
|
F = 10
|
|
maps = torch.rand(size=(N, 1, 1, 3))
|
|
verts_uvs = torch.randn(size=(N, V, 2))
|
|
tex = TexturesUV(
|
|
maps=maps,
|
|
faces_uvs=torch.randint(size=(N, 15, 3), high=V),
|
|
verts_uvs=verts_uvs,
|
|
)
|
|
verts = torch.rand(size=(5, V, 3))
|
|
faces = torch.randint(size=(5, 10, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces)
|
|
|
|
# Wrong number of faces
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
# Wrong batch dim for faces
|
|
tex = TexturesUV(
|
|
maps=maps,
|
|
faces_uvs=torch.randint(size=(1, F, 3), high=V),
|
|
verts_uvs=verts_uvs,
|
|
)
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
# Wrong batch dim for verts_uvs is not necessary to check as
|
|
# there is already a check inside TexturesUV for a batch dim
|
|
# mismatch with faces_uvs
|
|
|
|
meshes = Meshes(verts=verts, faces=faces)
|
|
meshes.textures = tex
|
|
|
|
# Cannot use the texture attribute set on meshes for sampling
|
|
# textures if the dimensions don't match
|
|
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
|
meshes.sample_textures(None)
|
|
|
|
|
|
class TestRectanglePacking(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
|
|
def wrap_pack(self, sizes):
|
|
"""
|
|
Call the pack_rectangles function, which we want to test,
|
|
and return its outputs.
|
|
Additionally makes some sanity checks on the output.
|
|
"""
|
|
res = pack_rectangles(sizes)
|
|
total = res.total_size
|
|
self.assertGreaterEqual(total[0], 0)
|
|
self.assertGreaterEqual(total[1], 0)
|
|
mask = torch.zeros(total, dtype=torch.bool)
|
|
seen_x_bound = False
|
|
seen_y_bound = False
|
|
for (in_x, in_y), (out_x, out_y, flipped, is_first) in zip(
|
|
sizes, res.locations
|
|
):
|
|
self.assertTrue(is_first)
|
|
self.assertGreaterEqual(out_x, 0)
|
|
self.assertGreaterEqual(out_y, 0)
|
|
placed_x, placed_y = (in_y, in_x) if flipped else (in_x, in_y)
|
|
upper_x = placed_x + out_x
|
|
upper_y = placed_y + out_y
|
|
self.assertGreaterEqual(total[0], upper_x)
|
|
if total[0] == upper_x:
|
|
seen_x_bound = True
|
|
self.assertGreaterEqual(total[1], upper_y)
|
|
if total[1] == upper_y:
|
|
seen_y_bound = True
|
|
already_taken = torch.sum(mask[out_x:upper_x, out_y:upper_y])
|
|
self.assertEqual(already_taken, 0)
|
|
mask[out_x:upper_x, out_y:upper_y] = 1
|
|
self.assertTrue(seen_x_bound)
|
|
self.assertTrue(seen_y_bound)
|
|
|
|
self.assertTrue(torch.all(torch.sum(mask, dim=0, dtype=torch.int32) > 0))
|
|
self.assertTrue(torch.all(torch.sum(mask, dim=1, dtype=torch.int32) > 0))
|
|
return res
|
|
|
|
def assert_bb(self, sizes, expected):
|
|
"""
|
|
Apply the pack_rectangles function to sizes and verify the
|
|
bounding box dimensions are expected.
|
|
"""
|
|
self.assertSetEqual(set(self.wrap_pack(sizes).total_size), expected)
|
|
|
|
def test_simple(self):
|
|
self.assert_bb([(3, 4), (4, 3)], {6, 4})
|
|
self.assert_bb([(2, 2), (2, 4), (2, 2)], {4, 4})
|
|
|
|
# many squares
|
|
self.assert_bb([(2, 2)] * 9, {2, 18})
|
|
|
|
# One big square and many small ones.
|
|
self.assert_bb([(3, 3)] + [(1, 1)] * 2, {3, 4})
|
|
self.assert_bb([(3, 3)] + [(1, 1)] * 3, {3, 4})
|
|
self.assert_bb([(3, 3)] + [(1, 1)] * 4, {3, 5})
|
|
self.assert_bb([(3, 3)] + [(1, 1)] * 5, {3, 5})
|
|
self.assert_bb([(1, 1)] * 6 + [(3, 3)], {3, 5})
|
|
self.assert_bb([(3, 3)] + [(1, 1)] * 7, {3, 6})
|
|
|
|
# many identical rectangles
|
|
self.assert_bb([(7, 190)] * 4 + [(190, 7)] * 4, {190, 56})
|
|
|
|
# require placing the flipped version of a rectangle
|
|
self.assert_bb([(1, 100), (5, 96), (4, 5)], {100, 6})
|
|
|
|
def test_random(self):
|
|
for _ in range(5):
|
|
vals = torch.randint(size=(20, 2), low=1, high=18)
|
|
sizes = []
|
|
for j in range(vals.shape[0]):
|
|
sizes.append((int(vals[j, 0]), int(vals[j, 1])))
|
|
self.wrap_pack(sizes)
|
|
|
|
def test_all_identical(self):
|
|
sizes = [Rectangle(xsize=61, ysize=82, identifier=1729)] * 3
|
|
total_size, locations = pack_unique_rectangles(sizes)
|
|
self.assertEqual(total_size, (61, 82))
|
|
self.assertEqual(len(locations), 3)
|
|
for i, (x, y, is_flipped, is_first) in enumerate(locations):
|
|
self.assertEqual(x, 0)
|
|
self.assertEqual(y, 0)
|
|
self.assertFalse(is_flipped)
|
|
self.assertEqual(is_first, i == 0)
|
|
|
|
def test_one_different_id(self):
|
|
sizes = [Rectangle(xsize=61, ysize=82, identifier=220)] * 3
|
|
sizes.extend([Rectangle(xsize=61, ysize=82, identifier=284)] * 3)
|
|
total_size, locations = pack_unique_rectangles(sizes)
|
|
self.assertEqual(total_size, (82, 122))
|
|
self.assertEqual(len(locations), 6)
|
|
for i, (x, y, is_flipped, is_first) in enumerate(locations):
|
|
self.assertTrue(is_flipped)
|
|
self.assertEqual(is_first, i % 3 == 0)
|
|
self.assertEqual(x, 0)
|
|
if i < 3:
|
|
self.assertEqual(y, 61)
|
|
else:
|
|
self.assertEqual(y, 0)
|