pytorch3d/tests/test_points_to_volumes.py
Jeremy Reizenstein ee2b2feb98 Use C++/CUDA in points2vols
Summary:
Move the core of add_points_to_volumes to the new C++/CUDA implementation. Add new flag to let the user stop this happening. Avoids copies. About a 30% speedup on the larger cases, up to 50% on the smaller cases.

New timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                     4575           12591            110
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   25468           29186             20
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 202085          209897              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 46059           48188             11
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000                83759           95669              7
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              326056          339393              2
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2379            4738            211
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                     12100           63099             42
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    63323           63737              8
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   45216           45479             12
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  57205           58524              9
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                139499          139926              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   40129           40431             13
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 204949          239293              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               1664541         1664541              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               391573          395108              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000              674869          674869              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            2713632         2713632              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     12726           13506             40
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    73103           73299              7
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  598634          598634              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 398742          399256              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                543129          543129              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1242956         1242956              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  1814            8884            276
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 1996            8851            251
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000                4608           11529            109
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               5183           12508             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000              7106           14077             71
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            25914           31818             20
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    1778            8823            282
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   1825            8613            274
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  3154           10161            159
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 4888            9404            103
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                5194            9963             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000               8109           14933             62
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 3320           10306            151
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000                7003            8595             72
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000              49140           52957             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             35890           36918             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            58890           59337              9
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          286878          287600              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   2484            8805            202
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  3967            9090            127
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                19423           19799             26
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               33228           33329             16
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              37292           37370             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000             73550           74017              7
--------------------------------------------------------------------------------
```
Previous timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                    10100           46422             50
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   28442           32100             18
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 241127          254269              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 54149           79480             10
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000               125459          212734              4
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              512739          512739              1
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2866           13365            175
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                      7026           12604             72
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    48822           55607             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   38098           38576             14
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  48006           54120             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                131563          138536              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   64615           91735              8
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 228815          246095              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               3086615         3086615              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               464298          465292              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000             1053440         1053440              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            6736236         6736236              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     11940           12440             42
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    56641           58051              9
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  711492          711492              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 326437          329846              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                418514          427911              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1524285         1524285              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  5949           13602             85
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 5817           13001             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000               23833           25971             21
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               9029           16178             56
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000             11595           18601             44
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            46986           47344             11
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    2554            9747            196
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   2676            9537            187
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  6567           14179             77
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 5840           12811             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                6102           13128             82
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000              11945           11995             42
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 7642           13671             66
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000               25190           25260             20
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000             212018          212134              3
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             40421           45692             13
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            92078           92132              6
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          457211          457229              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   3574           10377            140
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  7222           13023             70
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                48127           48165             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               34732           35295             15
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              43050           51064             12
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000            106028          106058              5
--------------------------------------------------------------------------------
```

Reviewed By: nikhilaravi

Differential Revision: D29548609

fbshipit-source-id: 7026e832ea299145c3f6b55687f3c1601294f5c0
2021-10-01 11:58:24 -07:00

565 lines
20 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from functools import partial
from itertools import product
from typing import Tuple
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import add_pointclouds_to_volumes
from pytorch3d.ops.points_to_volumes import _points_to_volumes
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.structures.volumes import Volumes
from pytorch3d.transforms.so3 import so3_exp_map
DEBUG = False
if DEBUG:
import os
import tempfile
from PIL import Image
def init_cube_point_cloud(batch_size: int, n_points: int, device: str, rotate_y: bool):
"""
Generate a random point cloud of `n_points` whose points
are sampled from faces of a 3D cube.
"""
# create the cube mesh batch_size times
meshes = TestPointsToVolumes.init_cube_mesh(batch_size=batch_size, device=device)
# generate point clouds by sampling points from the meshes
pcl = sample_points_from_meshes(meshes, num_samples=n_points, return_normals=False)
# colors of the cube sides
clrs = [
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 0.0, 1.0],
]
# init the color tensor "rgb"
rgb = torch.zeros_like(pcl)
# color each side of the cube with a constant color
clri = 0
for dim in (0, 1, 2):
for offs in (0.0, 1.0):
current_face_verts = (pcl[:, :, dim] - offs).abs() <= 1e-2
for bi in range(batch_size):
rgb[bi, current_face_verts[bi], :] = torch.tensor(clrs[clri]).type_as(
pcl
)
clri += 1
if rotate_y:
# uniformly spaced rotations around y axis
R = init_uniform_y_rotations(batch_size=batch_size, device=device)
# rotate the point clouds around y axis
pcl = torch.bmm(pcl - 0.5, R) + 0.5
return pcl, rgb
def init_volume_boundary_pointcloud(
batch_size: int,
volume_size: Tuple[int, int, int],
n_points: int,
interp_mode: str,
device: str,
require_grad: bool = False,
):
"""
Initialize a point cloud that closely follows a boundary of
a volume with a given size. The volume buffer is initialized as well.
"""
# generate a 3D point cloud sampled from sides of a [0,1] cube
xyz, rgb = init_cube_point_cloud(
batch_size, n_points=n_points, device=device, rotate_y=True
)
# make volume_size tensor
volume_size_t = torch.tensor(volume_size, dtype=xyz.dtype, device=xyz.device)
if interp_mode == "trilinear":
# make the xyz locations fall on the boundary of the
# first/last two voxels along each spatial dimension of the
# volume - this properly checks the correctness of the
# trilinear interpolation scheme
xyz = (xyz - 0.5) * ((volume_size_t - 2) / (volume_size_t - 1))[[2, 1, 0]] + 0.5
# rescale the cube pointcloud to overlap with the volume sides
# of the volume
rel_scale = volume_size_t / volume_size[0]
xyz = xyz * rel_scale[[2, 1, 0]][None, None]
# enable grad accumulation for the differentiability check
xyz.requires_grad = require_grad
rgb.requires_grad = require_grad
# create the pointclouds structure
pointclouds = Pointclouds(xyz, features=rgb)
# set the volume translation so that the point cloud is centered
# around 0
volume_translation = -0.5 * rel_scale[[2, 1, 0]]
# set the voxel size to 1 / (volume_size-1)
volume_voxel_size = 1 / (volume_size[0] - 1.0)
# instantiate the volumes
initial_volumes = Volumes(
features=xyz.new_zeros(batch_size, 3, *volume_size),
densities=xyz.new_zeros(batch_size, 1, *volume_size),
volume_translation=volume_translation,
voxel_size=volume_voxel_size,
)
return pointclouds, initial_volumes
def init_uniform_y_rotations(batch_size: int, device: torch.device):
"""
Generate a batch of `batch_size` 3x3 rotation matrices around y-axis
whose angles are uniformly distributed between 0 and 2 pi.
"""
axis = torch.tensor([0.0, 1.0, 0.0], device=device, dtype=torch.float32)
angles = torch.linspace(0, 2.0 * np.pi, batch_size + 1, device=device)
angles = angles[:batch_size]
log_rots = axis[None, :] * angles[:, None]
R = so3_exp_map(log_rots)
return R
class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
np.random.seed(42)
torch.manual_seed(42)
@staticmethod
def add_points_to_volumes(
batch_size: int,
volume_size: Tuple[int, int, int],
n_points: int,
interp_mode: str,
device: str,
):
(pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
batch_size=batch_size,
volume_size=volume_size,
n_points=n_points,
interp_mode=interp_mode,
require_grad=False,
device=device,
)
torch.cuda.synchronize()
def _add_points_to_volumes():
add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode)
torch.cuda.synchronize()
return _add_points_to_volumes
@staticmethod
def stack_4d_tensor_to_3d(arr):
n = arr.shape[0]
H = int(np.ceil(np.sqrt(n)))
W = int(np.ceil(n / H))
n_add = H * W - n
arr = torch.cat((arr, torch.zeros_like(arr[:1]).repeat(n_add, 1, 1, 1)))
rows = torch.chunk(arr, chunks=W, dim=0)
arr3d = torch.cat([torch.cat(list(row), dim=2) for row in rows], dim=1)
return arr3d
@staticmethod
def init_cube_mesh(batch_size: int, device: str):
"""
Generate a batch of `batch_size` cube meshes.
"""
device = torch.device(device)
verts, faces = [], []
for _ in range(batch_size):
v = torch.tensor(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
],
dtype=torch.float32,
device=device,
)
verts.append(v)
faces.append(
torch.tensor(
[
[0, 2, 1],
[0, 3, 2],
[2, 3, 4],
[2, 4, 5],
[1, 2, 5],
[1, 5, 6],
[0, 7, 4],
[0, 4, 3],
[5, 4, 7],
[5, 7, 6],
[0, 6, 7],
[0, 1, 6],
],
dtype=torch.int64,
device=device,
)
)
faces = torch.stack(faces)
verts = torch.stack(verts)
simpleces = Meshes(verts=verts, faces=faces)
return simpleces
def test_from_point_cloud(self, interp_mode="trilinear"):
"""
Generates a volume from a random point cloud sampled from faces
of a 3D cube. Since each side of the cube is homogeneously colored with
a different color, this should result in a volume with a
predefined homogeneous color of the cells along its borders
and black interior. The test is run for both cube and non-cube shaped
volumes.
"""
# batch_size = 4 sides of the cube
batch_size = 4
for volume_size in ([25, 25, 25], [30, 25, 15]):
for python, interp_mode in product([True, False], ["trilinear", "nearest"]):
(pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
volume_size=volume_size,
n_points=int(1e5),
interp_mode=interp_mode,
batch_size=batch_size,
require_grad=True,
device="cuda:0",
)
volumes = add_pointclouds_to_volumes(
pointclouds,
initial_volumes,
mode=interp_mode,
_python=python,
)
V_color, V_density = volumes.features(), volumes.densities()
# expected colors of different cube sides
clr_sides = torch.tensor(
[
[[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]],
[[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]],
[[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]],
[[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]],
],
dtype=V_color.dtype,
device=V_color.device,
)
clr_ambient = torch.tensor(
[0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device
)
clr_top_bot = torch.tensor(
[[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]],
dtype=V_color.dtype,
device=V_color.device,
)
if DEBUG:
outdir = tempfile.gettempdir() + "/test_points_to_volumes"
os.makedirs(outdir, exist_ok=True)
for slice_dim in (1, 2):
for vidx in range(V_color.shape[0]):
vim = V_color.detach()[vidx].split(1, dim=slice_dim)
vim = torch.stack([v.squeeze() for v in vim])
vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu())
im = Image.fromarray(
(vim.numpy() * 255.0)
.astype(np.uint8)
.transpose(1, 2, 0)
)
outfile = (
outdir
+ f"/rgb_{interp_mode}"
+ f"_{str(volume_size).replace(' ','')}"
+ f"_{vidx:003d}_sldim{slice_dim}.png"
)
im.save(outfile)
print("exported %s" % outfile)
# check the density V_density
# first binarize the density
V_density_bin = (V_density > 1e-4).type_as(V_density)
d_one = V_density.new_ones(1)
d_zero = V_density.new_zeros(1)
for vidx in range(V_color.shape[0]):
# the first/last depth-wise slice has to be filled with 1.0
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_one, "first"
)
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_one, "last"
)
# the middle depth-wise slices have to be empty
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_zero, "middle"
)
# the top/bottom slices have to be filled with 1.0
self._check_volume_slice_color_density(
V_density_bin[vidx], 2, interp_mode, d_one, "first"
)
self._check_volume_slice_color_density(
V_density_bin[vidx], 2, interp_mode, d_one, "last"
)
# check the colors
for vidx in range(V_color.shape[0]):
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first"
)
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last"
)
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_ambient, "middle"
)
self._check_volume_slice_color_density(
V_color[vidx], 2, interp_mode, clr_top_bot[0], "first"
)
self._check_volume_slice_color_density(
V_color[vidx], 2, interp_mode, clr_top_bot[1], "last"
)
# check differentiability
loss = V_color.mean() + V_density.mean()
loss.backward()
rgb = pointclouds.features_padded()
xyz = pointclouds.points_padded()
for field in (xyz, rgb):
if interp_mode == "nearest" and (field is xyz):
# this does not produce grads w.r.t. xyz
self.assertIsNone(field.grad)
else:
self.assertTrue(torch.isfinite(field.grad.data).all())
def _check_volume_slice_color_density(
self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
):
# decompose the volume to individual slices along split_dim
vim = V.detach().split(1, dim=split_dim)
vim = torch.stack([v.squeeze(split_dim) for v in vim])
# determine which slices should be compared to clr_gt based on
# the 'slice_type' input
if slice_type == "first":
slice_dims = (0, 1) if interp_mode == "trilinear" else (0,)
elif slice_type == "last":
slice_dims = (-1, -2) if interp_mode == "trilinear" else (-1,)
elif slice_type == "middle":
internal_border = 2 if interp_mode == "trilinear" else 1
slice_dims = torch.arange(internal_border, vim.shape[0] - internal_border)
else:
raise ValueError(slice_type)
# compute the average error within each slice
clr_diff = (
vim[slice_dims, :, border:-border, border:-border]
- clr_gt[None, :, None, None]
)
clr_diff = clr_diff.abs().mean(dim=(2, 3)).view(-1)
# check that all per-slice avg errors vanish
self.assertClose(clr_diff, torch.zeros_like(clr_diff), atol=1e-2)
class TestRawFunction(TestCaseMixin, unittest.TestCase):
"""
Testing the _C.points_to_volumes function through its wrapper
_points_to_volumes.
"""
def setUp(self) -> None:
torch.manual_seed(42)
def test_grad_corners_splat_cpu(self):
self.do_gradcheck(torch.device("cpu"), True, True)
def test_grad_corners_round_cpu(self):
self.do_gradcheck(torch.device("cpu"), False, True)
def test_grad_splat_cpu(self):
self.do_gradcheck(torch.device("cpu"), True, False)
def test_grad_round_cpu(self):
self.do_gradcheck(torch.device("cpu"), False, False)
def test_grad_corners_splat_cuda(self):
self.do_gradcheck(torch.device("cuda:0"), True, True)
def test_grad_corners_round_cuda(self):
self.do_gradcheck(torch.device("cuda:0"), False, True)
def test_grad_splat_cuda(self):
self.do_gradcheck(torch.device("cuda:0"), True, False)
def test_grad_round_cuda(self):
self.do_gradcheck(torch.device("cuda:0"), False, False)
def do_gradcheck(self, device, splat: bool, align_corners: bool):
"""
Use gradcheck to verify the gradient of _points_to_volumes
with random input.
"""
N, C, D, H, W, P = 2, 4, 5, 6, 7, 5
points_3d = (
torch.rand((N, P, 3), device=device, dtype=torch.float64) * 0.8 + 0.1
)
points_features = torch.rand((N, P, C), device=device, dtype=torch.float64)
volume_densities = torch.zeros((N, 1, D, H, W), device=device)
volume_features = torch.zeros((N, C, D, H, W), device=device)
volume_densities_scale = torch.rand_like(volume_densities)
volume_features_scale = torch.rand_like(volume_features)
grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand(
N, 3
)
mask = torch.ones((N, P), device=device)
mask[:, 0] = 0
align_corners = False
def f(points_3d_, points_features_):
(volume_densities_, volume_features_) = _points_to_volumes(
points_3d_.to(torch.float32),
points_features_.to(torch.float32),
volume_densities.clone(),
volume_features.clone(),
grid_sizes,
2.0,
mask,
align_corners,
splat,
)
density = (volume_densities_ * volume_densities_scale).sum()
features = (volume_features_ * volume_features_scale).sum()
return density, features
base = f(points_3d.clone(), points_features.clone())
self.assertGreater(base[0], 0)
self.assertGreater(base[1], 0)
points_features.requires_grad = True
if splat:
points_3d.requires_grad = True
torch.autograd.gradcheck(
f,
(points_3d, points_features),
check_undefined_grad=False,
eps=2e-4,
atol=0.01,
)
else:
torch.autograd.gradcheck(
partial(f, points_3d),
points_features,
check_undefined_grad=False,
eps=2e-3,
atol=0.001,
)
def test_single_corners_round_cpu(self):
self.single_point(torch.device("cpu"), False, True)
def test_single_corners_splat_cpu(self):
self.single_point(torch.device("cpu"), True, True)
def test_single_round_cpu(self):
self.single_point(torch.device("cpu"), False, False)
def test_single_splat_cpu(self):
self.single_point(torch.device("cpu"), True, False)
def test_single_corners_round_cuda(self):
self.single_point(torch.device("cuda:0"), False, True)
def test_single_corners_splat_cuda(self):
self.single_point(torch.device("cuda:0"), True, True)
def test_single_round_cuda(self):
self.single_point(torch.device("cuda:0"), False, False)
def test_single_splat_cuda(self):
self.single_point(torch.device("cuda:0"), True, False)
def single_point(self, device, splat: bool, align_corners: bool):
"""
Check the outcome of _points_to_volumes where a single point
exists which lines up with a single voxel.
"""
D, H, W = (6, 6, 11) if align_corners else (5, 5, 10)
N, C, P = 1, 1, 1
if align_corners:
points_3d = torch.tensor([[[-0.2, 0.2, -0.2]]], device=device)
else:
points_3d = torch.tensor([[[-0.3, 0.4, -0.4]]], device=device)
points_features = torch.zeros((N, P, C), device=device)
volume_densities = torch.zeros((N, 1, D, H, W), device=device)
volume_densities_expected = torch.zeros((N, 1, D, H, W), device=device)
volume_features = torch.zeros((N, C, D, H, W), device=device)
grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand(
N, 3
)
mask = torch.ones((N, P), device=device)
point_weight = 19.0
volume_densities_, volume_features_ = _points_to_volumes(
points_3d,
points_features,
volume_densities,
volume_features,
grid_sizes,
point_weight,
mask,
align_corners,
splat,
)
self.assertIs(volume_densities, volume_densities_)
self.assertIs(volume_features, volume_features_)
if align_corners:
volume_densities_expected[0, 0, 2, 3, 4] = point_weight
else:
volume_densities_expected[0, 0, 1, 3, 3] = point_weight
self.assertClose(volume_densities, volume_densities_expected)