Jeremy Reizenstein ec9580a1d4 test runner for eval_demo
Summary:
Create a test runner for the eval_demo code.  Debugging this is useful for understanding datasets.

Introduces an environment variable INTERACTIVE_TESTING for ignoring tests which are not intended for use in regular test runs.

Reviewed By: shapovalov

Differential Revision: D35964016

fbshipit-source-id: ab0f93aff66b6cfeca942b14466cf81f7feb2224
2022-05-06 08:31:19 -07:00

263 lines
9.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import copy
import json
import os
from typing import Any, Dict, List, Optional, Sequence
from iopath.common.file_io import PathManager
from pytorch3d.implicitron.tools.config import enable_get_default_args
from .implicitron_dataset import ImplicitronDataset, ImplicitronDatasetBase
from .utils import (
DATASET_TYPE_KNOWN,
DATASET_TYPE_TEST,
DATASET_TYPE_TRAIN,
DATASET_TYPE_UNKNOWN,
)
# TODO from dataset.dataset_configs import DATASET_CONFIGS
DATASET_CONFIGS: Dict[str, Dict[str, Any]] = {
"default": {
"box_crop": True,
"box_crop_context": 0.3,
"image_width": 800,
"image_height": 800,
"remove_empty_masks": True,
}
}
# fmt: off
CO3D_CATEGORIES: List[str] = list(reversed([
"baseballbat", "banana", "bicycle", "microwave", "tv",
"cellphone", "toilet", "hairdryer", "couch", "kite", "pizza",
"umbrella", "wineglass", "laptop",
"hotdog", "stopsign", "frisbee", "baseballglove",
"cup", "parkingmeter", "backpack", "toyplane", "toybus",
"handbag", "chair", "keyboard", "car", "motorcycle",
"carrot", "bottle", "sandwich", "remote", "bowl", "skateboard",
"toaster", "mouse", "toytrain", "book", "toytruck",
"orange", "broccoli", "plant", "teddybear",
"suitcase", "bench", "ball", "cake",
"vase", "hydrant", "apple", "donut",
]))
# fmt: on
_CO3D_DATASET_ROOT: str = os.getenv("CO3D_DATASET_ROOT", "")
def dataset_zoo(
dataset_name: str = "co3d_singlesequence",
dataset_root: str = _CO3D_DATASET_ROOT,
category: str = "DEFAULT",
limit_to: int = -1,
limit_sequences_to: int = -1,
n_frames_per_sequence: int = -1,
test_on_train: bool = False,
load_point_clouds: bool = False,
mask_images: bool = False,
mask_depths: bool = False,
restrict_sequence_name: Sequence[str] = (),
test_restrict_sequence_id: int = -1,
assert_single_seq: bool = False,
only_test_set: bool = False,
aux_dataset_kwargs: dict = DATASET_CONFIGS["default"],
path_manager: Optional[PathManager] = None,
) -> Dict[str, ImplicitronDatasetBase]:
"""
Generates the training / validation and testing dataset objects.
Args:
dataset_name: The name of the returned dataset.
dataset_root: The root folder of the dataset.
category: The object category of the dataset.
limit_to: Limit the dataset to the first #limit_to frames.
limit_sequences_to: Limit the dataset to the first
#limit_sequences_to sequences.
n_frames_per_sequence: Randomly sample #n_frames_per_sequence frames
in each sequence.
test_on_train: Construct validation and test datasets from
the training subset.
load_point_clouds: Enable returning scene point clouds from the dataset.
mask_images: Mask the loaded images with segmentation masks.
mask_depths: Mask the loaded depths with segmentation masks.
restrict_sequence_name: Restrict the dataset sequences to the ones
present in the given list of names.
test_restrict_sequence_id: The ID of the loaded sequence.
Active for dataset_name='co3d_singlesequence'.
assert_single_seq: Assert that only frames from a single sequence
are present in all generated datasets.
only_test_set: Load only the test set.
aux_dataset_kwargs: Specifies additional arguments to the
ImplicitronDataset constructor call.
Returns:
datasets: A dictionary containing the
`"dataset_subset_name": torch_dataset_object` key, value pairs.
"""
datasets = {}
# TODO:
# - implement loading multiple categories
if dataset_name in ["co3d_singlesequence", "co3d_multisequence"]:
# This maps the common names of the dataset subsets ("train"/"val"/"test")
# to the names of the subsets in the CO3D dataset.
set_names_mapping = _get_co3d_set_names_mapping(
dataset_name,
test_on_train,
only_test_set,
)
# load the evaluation batches
task = dataset_name.split("_")[-1]
batch_indices_path = os.path.join(
dataset_root,
category,
f"eval_batches_{task}.json",
)
if path_manager is not None:
batch_indices_path = path_manager.get_local_path(batch_indices_path)
if not os.path.isfile(batch_indices_path):
# The batch indices file does not exist.
# Most probably the user has not specified the root folder.
raise ValueError("Please specify a correct dataset_root folder.")
with open(batch_indices_path, "r") as f:
eval_batch_index = json.load(f)
if task == "singlesequence":
assert (
test_restrict_sequence_id is not None and test_restrict_sequence_id >= 0
), (
"Please specify an integer id 'test_restrict_sequence_id'"
+ " of the sequence considered for 'singlesequence'"
+ " training and evaluation."
)
assert len(restrict_sequence_name) == 0, (
"For the 'singlesequence' task, the restrict_sequence_name has"
" to be unset while test_restrict_sequence_id has to be set to an"
" integer defining the order of the evaluation sequence."
)
# a sort-stable set() equivalent:
eval_batches_sequence_names = list(
{b[0][0]: None for b in eval_batch_index}.keys()
)
eval_sequence_name = eval_batches_sequence_names[test_restrict_sequence_id]
eval_batch_index = [
b for b in eval_batch_index if b[0][0] == eval_sequence_name
]
# overwrite the restrict_sequence_name
restrict_sequence_name = [eval_sequence_name]
for dataset, subsets in set_names_mapping.items():
frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
sequence_file = os.path.join(
dataset_root, category, "sequence_annotations.jgz"
)
subset_lists_file = os.path.join(dataset_root, category, "set_lists.json")
# TODO: maybe directly in param list
params = {
**copy.deepcopy(aux_dataset_kwargs),
"frame_annotations_file": frame_file,
"sequence_annotations_file": sequence_file,
"subset_lists_file": subset_lists_file,
"dataset_root": dataset_root,
"limit_to": limit_to,
"limit_sequences_to": limit_sequences_to,
"n_frames_per_sequence": n_frames_per_sequence
if dataset == "train"
else -1,
"subsets": subsets,
"load_point_clouds": load_point_clouds,
"mask_images": mask_images,
"mask_depths": mask_depths,
"pick_sequence": restrict_sequence_name,
"path_manager": path_manager,
}
datasets[dataset] = ImplicitronDataset(**params)
if dataset == "test":
if len(restrict_sequence_name) > 0:
eval_batch_index = [
b for b in eval_batch_index if b[0][0] in restrict_sequence_name
]
datasets[dataset].eval_batches = datasets[
dataset
].seq_frame_index_to_dataset_index(eval_batch_index)
if assert_single_seq:
# check theres only one sequence in all datasets
assert (
len(
{
e["frame_annotation"].sequence_name
for dset in datasets.values()
for e in dset.frame_annots
}
)
<= 1
), "Multiple sequences loaded but expected one"
else:
raise ValueError(f"Unsupported dataset: {dataset_name}")
if test_on_train:
datasets["val"] = datasets["train"]
datasets["test"] = datasets["train"]
return datasets
enable_get_default_args(dataset_zoo)
def _get_co3d_set_names_mapping(
dataset_name: str,
test_on_train: bool,
only_test: bool,
) -> Dict[str, List[str]]:
"""
Returns the mapping of the common dataset subset names ("train"/"val"/"test")
to the names of the corresponding subsets in the CO3D dataset
("test_known"/"test_unseen"/"train_known"/"train_unseen").
"""
single_seq = dataset_name == "co3d_singlesequence"
if only_test:
set_names_mapping = {}
else:
set_names_mapping = {
"train": [
(DATASET_TYPE_TEST if single_seq else DATASET_TYPE_TRAIN)
+ "_"
+ DATASET_TYPE_KNOWN
]
}
if not test_on_train:
prefixes = [DATASET_TYPE_TEST]
if not single_seq:
prefixes.append(DATASET_TYPE_TRAIN)
set_names_mapping.update(
{
dset: [
p + "_" + t
for p in prefixes
for t in [DATASET_TYPE_KNOWN, DATASET_TYPE_UNKNOWN]
]
for dset in ["val", "test"]
}
)
return set_names_mapping