mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-03 12:22:49 +08:00
Summary: This diff is auto-generated to upgrade the Pyre version and suppress errors in vision. The upgrade will affect Pyre local configurations in the following directories: ``` vision/ale/search vision/fair/fvcore vision/fair/pytorch3d vision/ocr/rosetta_hash vision/vogue/personalization ``` Differential Revision: D21688454 fbshipit-source-id: 1f3c3fee42b6da2e162fd0932742ab8c5c96aa45
280 lines
10 KiB
Python
280 lines
10 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
from torch.nn.functional import interpolate
|
|
|
|
from .utils import padded_to_list, padded_to_packed
|
|
|
|
|
|
"""
|
|
This file has functions for interpolating textures after rasterization.
|
|
"""
|
|
|
|
|
|
def _pad_texture_maps(images: List[torch.Tensor]) -> torch.Tensor:
|
|
"""
|
|
Pad all texture images so they have the same height and width.
|
|
|
|
Args:
|
|
images: list of N tensors of shape (H, W, 3)
|
|
|
|
Returns:
|
|
tex_maps: Tensor of shape (N, max_H, max_W, 3)
|
|
"""
|
|
tex_maps = []
|
|
max_H = 0
|
|
max_W = 0
|
|
for im in images:
|
|
h, w, _3 = im.shape
|
|
if h > max_H:
|
|
max_H = h
|
|
if w > max_W:
|
|
max_W = w
|
|
tex_maps.append(im)
|
|
max_shape = (max_H, max_W)
|
|
|
|
for i, image in enumerate(tex_maps):
|
|
if image.shape[:2] != max_shape:
|
|
image_BCHW = image.permute(2, 0, 1)[None]
|
|
new_image_BCHW = interpolate(
|
|
image_BCHW, size=max_shape, mode="bilinear", align_corners=False
|
|
)
|
|
tex_maps[i] = new_image_BCHW[0].permute(1, 2, 0)
|
|
tex_maps = torch.stack(tex_maps, dim=0) # (num_tex_maps, max_H, max_W, 3)
|
|
return tex_maps
|
|
|
|
|
|
def _extend_tensor(input_tensor: torch.Tensor, N: int) -> torch.Tensor:
|
|
"""
|
|
Extend a tensor `input_tensor` with ndim > 2, `N` times along the batch
|
|
dimension. This is done in the following sequence of steps (where `B` is
|
|
the batch dimension):
|
|
|
|
.. code-block:: python
|
|
|
|
input_tensor (B, ...)
|
|
-> add leading empty dimension (1, B, ...)
|
|
-> expand (N, B, ...)
|
|
-> reshape (N * B, ...)
|
|
|
|
Args:
|
|
input_tensor: torch.Tensor with ndim > 2 representing a batched input.
|
|
N: number of times to extend each element of the batch.
|
|
"""
|
|
# pyre-fixme[16]: `Tensor` has no attribute `ndim`.
|
|
if input_tensor.ndim < 2:
|
|
raise ValueError("Input tensor must have ndimensions >= 2.")
|
|
B = input_tensor.shape[0]
|
|
non_batch_dims = tuple(input_tensor.shape[1:])
|
|
constant_dims = (-1,) * input_tensor.ndim # these dims are not expanded.
|
|
return (
|
|
input_tensor.clone()[None, ...]
|
|
.expand(N, *constant_dims)
|
|
.transpose(0, 1)
|
|
.reshape(N * B, *non_batch_dims)
|
|
)
|
|
|
|
|
|
class Textures(object):
|
|
def __init__(
|
|
self,
|
|
maps: Union[List, torch.Tensor, None] = None,
|
|
faces_uvs: Optional[torch.Tensor] = None,
|
|
verts_uvs: Optional[torch.Tensor] = None,
|
|
verts_rgb: Optional[torch.Tensor] = None,
|
|
):
|
|
"""
|
|
Args:
|
|
maps: texture map per mesh. This can either be a list of maps
|
|
[(H, W, 3)] or a padded tensor of shape (N, H, W, 3).
|
|
faces_uvs: (N, F, 3) tensor giving the index into verts_uvs for each
|
|
vertex in the face. Padding value is assumed to be -1.
|
|
verts_uvs: (N, V, 2) tensor giving the uv coordinate per vertex.
|
|
verts_rgb: (N, V, 3) tensor giving the rgb color per vertex. Padding
|
|
value is assumed to be -1.
|
|
|
|
Note: only the padded representation of the textures is stored
|
|
and the packed/list representations are computed on the fly and
|
|
not cached.
|
|
"""
|
|
# pyre-fixme[16]: `Tensor` has no attribute `ndim`.
|
|
if faces_uvs is not None and faces_uvs.ndim != 3:
|
|
msg = "Expected faces_uvs to be of shape (N, F, 3); got %r"
|
|
raise ValueError(msg % repr(faces_uvs.shape))
|
|
if verts_uvs is not None and verts_uvs.ndim != 3:
|
|
msg = "Expected verts_uvs to be of shape (N, V, 2); got %r"
|
|
raise ValueError(msg % repr(verts_uvs.shape))
|
|
if verts_rgb is not None and verts_rgb.ndim != 3:
|
|
msg = "Expected verts_rgb to be of shape (N, V, 3); got %r"
|
|
raise ValueError(msg % repr(verts_rgb.shape))
|
|
if maps is not None:
|
|
# pyre-fixme[16]: `List` has no attribute `ndim`.
|
|
if torch.is_tensor(maps) and maps.ndim != 4:
|
|
msg = "Expected maps to be of shape (N, H, W, 3); got %r"
|
|
# pyre-fixme[16]: `List` has no attribute `shape`.
|
|
raise ValueError(msg % repr(maps.shape))
|
|
elif isinstance(maps, list):
|
|
maps = _pad_texture_maps(maps)
|
|
if faces_uvs is None or verts_uvs is None:
|
|
msg = "To use maps, faces_uvs and verts_uvs are required"
|
|
raise ValueError(msg)
|
|
|
|
self._faces_uvs_padded = faces_uvs
|
|
self._verts_uvs_padded = verts_uvs
|
|
self._verts_rgb_padded = verts_rgb
|
|
self._maps_padded = maps
|
|
|
|
# The number of faces/verts for each mesh is
|
|
# set inside the Meshes object when textures is
|
|
# passed into the Meshes constructor.
|
|
self._num_faces_per_mesh = None
|
|
self._num_verts_per_mesh = None
|
|
|
|
def clone(self):
|
|
other = self.__class__()
|
|
for k in dir(self):
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v):
|
|
setattr(other, k, v.clone())
|
|
return other
|
|
|
|
def to(self, device):
|
|
for k in dir(self):
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v) and v.device != device:
|
|
setattr(self, k, v.to(device))
|
|
return self
|
|
|
|
def __getitem__(self, index):
|
|
other = self.__class__()
|
|
for key in dir(self):
|
|
value = getattr(self, key)
|
|
if torch.is_tensor(value):
|
|
if isinstance(index, int):
|
|
setattr(other, key, value[index][None])
|
|
else:
|
|
setattr(other, key, value[index])
|
|
return other
|
|
|
|
def faces_uvs_padded(self) -> torch.Tensor:
|
|
# pyre-fixme[7]: Expected `Tensor` but got `Optional[torch.Tensor]`.
|
|
return self._faces_uvs_padded
|
|
|
|
def faces_uvs_list(self) -> Union[List[torch.Tensor], None]:
|
|
if self._faces_uvs_padded is None:
|
|
return None
|
|
return padded_to_list(
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
self._faces_uvs_padded,
|
|
split_size=self._num_faces_per_mesh,
|
|
)
|
|
|
|
def faces_uvs_packed(self) -> Union[torch.Tensor, None]:
|
|
if self._faces_uvs_padded is None:
|
|
return None
|
|
return padded_to_packed(
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
self._faces_uvs_padded,
|
|
split_size=self._num_faces_per_mesh,
|
|
)
|
|
|
|
def verts_uvs_padded(self) -> Union[torch.Tensor, None]:
|
|
return self._verts_uvs_padded
|
|
|
|
def verts_uvs_list(self) -> Union[List[torch.Tensor], None]:
|
|
if self._verts_uvs_padded is None:
|
|
return None
|
|
# Vertices shared between multiple faces
|
|
# may have a different uv coordinate for
|
|
# each face so the num_verts_uvs_per_mesh
|
|
# may be different from num_verts_per_mesh.
|
|
# Therefore don't use any split_size.
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
return padded_to_list(self._verts_uvs_padded)
|
|
|
|
def verts_uvs_packed(self) -> Union[torch.Tensor, None]:
|
|
if self._verts_uvs_padded is None:
|
|
return None
|
|
# Vertices shared between multiple faces
|
|
# may have a different uv coordinate for
|
|
# each face so the num_verts_uvs_per_mesh
|
|
# may be different from num_verts_per_mesh.
|
|
# Therefore don't use any split_size.
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
return padded_to_packed(self._verts_uvs_padded)
|
|
|
|
def verts_rgb_padded(self) -> Union[torch.Tensor, None]:
|
|
return self._verts_rgb_padded
|
|
|
|
def verts_rgb_list(self) -> Union[List[torch.Tensor], None]:
|
|
if self._verts_rgb_padded is None:
|
|
return None
|
|
return padded_to_list(
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
self._verts_rgb_padded,
|
|
split_size=self._num_verts_per_mesh,
|
|
)
|
|
|
|
def verts_rgb_packed(self) -> Union[torch.Tensor, None]:
|
|
if self._verts_rgb_padded is None:
|
|
return None
|
|
return padded_to_packed(
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
self._verts_rgb_padded,
|
|
split_size=self._num_verts_per_mesh,
|
|
)
|
|
|
|
# Currently only the padded maps are used.
|
|
def maps_padded(self) -> Union[torch.Tensor, None]:
|
|
# pyre-fixme[7]: Expected `Optional[torch.Tensor]` but got `Union[None,
|
|
# List[typing.Any], torch.Tensor]`.
|
|
return self._maps_padded
|
|
|
|
def extend(self, N: int) -> "Textures":
|
|
"""
|
|
Create new Textures class which contains each input texture N times
|
|
|
|
Args:
|
|
N: number of new copies of each texture.
|
|
|
|
Returns:
|
|
new Textures object.
|
|
"""
|
|
if not isinstance(N, int):
|
|
raise ValueError("N must be an integer.")
|
|
if N <= 0:
|
|
raise ValueError("N must be > 0.")
|
|
|
|
if all(
|
|
v is not None
|
|
for v in [self._faces_uvs_padded, self._verts_uvs_padded, self._maps_padded]
|
|
):
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
new_verts_uvs = _extend_tensor(self._verts_uvs_padded, N)
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
new_faces_uvs = _extend_tensor(self._faces_uvs_padded, N)
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got `Union[None,
|
|
# List[typing.Any], torch.Tensor]`.
|
|
new_maps = _extend_tensor(self._maps_padded, N)
|
|
return self.__class__(
|
|
verts_uvs=new_verts_uvs, faces_uvs=new_faces_uvs, maps=new_maps
|
|
)
|
|
elif self._verts_rgb_padded is not None:
|
|
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
|
# `Optional[torch.Tensor]`.
|
|
new_verts_rgb = _extend_tensor(self._verts_rgb_padded, N)
|
|
return self.__class__(verts_rgb=new_verts_rgb)
|
|
else:
|
|
msg = "Either vertex colors or texture maps are required."
|
|
raise ValueError(msg)
|