pytorch3d/tests/implicitron/test_frame_data_builder.py
Ildar Salakhiev ebdbfde0ce Extract BlobLoader class from JsonIndexDataset and moving crop_by_bbox to FrameData
Summary:
extracted blob loader
added documentation for blob_loader
did some refactoring on fields
for detailed steps and discussions see:
https://github.com/facebookresearch/pytorch3d/pull/1463
https://github.com/fairinternal/pixar_replay/pull/160

Reviewed By: bottler

Differential Revision: D44061728

fbshipit-source-id: eefb21e9679003045d73729f96e6a93a1d4d2d51
2023-04-04 07:17:43 -07:00

225 lines
8.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import gzip
import os
import unittest
from typing import List
import numpy as np
import torch
from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.frame_data import FrameDataBuilder
from pytorch3d.implicitron.dataset.utils import (
load_16big_png_depth,
load_1bit_png_mask,
load_depth,
load_depth_mask,
load_image,
load_mask,
safe_as_tensor,
)
from pytorch3d.implicitron.tools.config import get_default_args
from pytorch3d.renderer.cameras import PerspectiveCameras
from tests.common_testing import TestCaseMixin
from tests.implicitron.common_resources import get_skateboard_data
class TestFrameDataBuilder(TestCaseMixin, unittest.TestCase):
def setUp(self):
torch.manual_seed(42)
category = "skateboard"
stack = contextlib.ExitStack()
self.dataset_root, self.path_manager = stack.enter_context(
get_skateboard_data()
)
self.addCleanup(stack.close)
self.image_height = 768
self.image_width = 512
self.frame_data_builder = FrameDataBuilder(
image_height=self.image_height,
image_width=self.image_width,
dataset_root=self.dataset_root,
path_manager=self.path_manager,
)
# loading single frame annotation of dataset (see JsonIndexDataset._load_frames())
frame_file = os.path.join(self.dataset_root, category, "frame_annotations.jgz")
local_file = self.path_manager.get_local_path(frame_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
frame_annots_list = types.load_dataclass(
zipfile, List[types.FrameAnnotation]
)
self.frame_annotation = frame_annots_list[0]
sequence_annotations_file = os.path.join(
self.dataset_root, category, "sequence_annotations.jgz"
)
local_file = self.path_manager.get_local_path(sequence_annotations_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
seq_annots_list = types.load_dataclass(
zipfile, List[types.SequenceAnnotation]
)
seq_annots = {entry.sequence_name: entry for entry in seq_annots_list}
self.seq_annotation = seq_annots[self.frame_annotation.sequence_name]
point_cloud = self.seq_annotation.point_cloud
self.frame_data = FrameData(
frame_number=safe_as_tensor(self.frame_annotation.frame_number, torch.long),
frame_timestamp=safe_as_tensor(
self.frame_annotation.frame_timestamp, torch.float
),
sequence_name=self.frame_annotation.sequence_name,
sequence_category=self.seq_annotation.category,
camera_quality_score=safe_as_tensor(
self.seq_annotation.viewpoint_quality_score, torch.float
),
point_cloud_quality_score=safe_as_tensor(
point_cloud.quality_score, torch.float
)
if point_cloud is not None
else None,
)
def test_frame_data_builder_args(self):
# test that FrameDataBuilder works with get_default_args
get_default_args(FrameDataBuilder)
def test_fix_point_cloud_path(self):
"""Some files in Co3Dv2 have an accidental absolute path stored."""
original_path = "some_file_path"
modified_path = self.frame_data_builder._fix_point_cloud_path(original_path)
self.assertIn(original_path, modified_path)
self.assertIn(self.frame_data_builder.dataset_root, modified_path)
def test_load_and_adjust_frame_data(self):
self.frame_data.image_size_hw = safe_as_tensor(
self.frame_annotation.image.size, torch.long
)
self.frame_data.effective_image_size_hw = self.frame_data.image_size_hw
(
self.frame_data.fg_probability,
self.frame_data.mask_path,
self.frame_data.bbox_xywh,
) = self.frame_data_builder._load_fg_probability(self.frame_annotation)
self.assertIsNotNone(self.frame_data.mask_path)
self.assertTrue(torch.is_tensor(self.frame_data.fg_probability))
self.assertTrue(torch.is_tensor(self.frame_data.bbox_xywh))
# assert bboxes shape
self.assertEqual(self.frame_data.bbox_xywh.shape, torch.Size([4]))
(
self.frame_data.image_rgb,
self.frame_data.image_path,
) = self.frame_data_builder._load_images(
self.frame_annotation, self.frame_data.fg_probability
)
self.assertEqual(type(self.frame_data.image_rgb), np.ndarray)
self.assertIsNotNone(self.frame_data.image_path)
(
self.frame_data.depth_map,
depth_path,
self.frame_data.depth_mask,
) = self.frame_data_builder._load_mask_depth(
self.frame_annotation,
self.frame_data.fg_probability,
)
self.assertTrue(torch.is_tensor(self.frame_data.depth_map))
self.assertIsNotNone(depth_path)
self.assertTrue(torch.is_tensor(self.frame_data.depth_mask))
new_size = (self.image_height, self.image_width)
if self.frame_data_builder.box_crop:
self.frame_data.crop_by_metadata_bbox_(
self.frame_data_builder.box_crop_context,
)
# assert image and mask shapes after resize
self.frame_data.resize_frame_(
new_size_hw=torch.tensor(new_size, dtype=torch.long),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.image_rgb.shape,
torch.Size([3, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.fg_probability.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_map.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_mask.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.frame_data.camera = self.frame_data_builder._get_pytorch3d_camera(
self.frame_annotation,
)
self.assertEqual(type(self.frame_data.camera), PerspectiveCameras)
def test_load_image(self):
path = os.path.join(self.dataset_root, self.frame_annotation.image.path)
local_path = self.path_manager.get_local_path(path)
image = load_image(local_path)
self.assertEqual(image.dtype, np.float32)
self.assertLessEqual(np.max(image), 1.0)
self.assertGreaterEqual(np.min(image), 0.0)
def test_load_mask(self):
path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
mask = load_mask(path)
self.assertEqual(mask.dtype, np.float32)
self.assertLessEqual(np.max(mask), 1.0)
self.assertGreaterEqual(np.min(mask), 0.0)
def test_load_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
depth_map = load_depth(path, self.frame_annotation.depth.scale_adjustment)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 3)
def test_load_16big_png_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
depth_map = load_16big_png_depth(path)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 2)
def test_load_1bit_png_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask = load_1bit_png_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 2)
def test_load_depth_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask = load_depth_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 3)