pytorch3d/tests/implicitron/test_json_index_dataset_provider_v2.py
David Novotny e8390d3500 JsonIndexDatasetProviderV2
Summary: A new version of json index dataset provider supporting CO3Dv2

Reviewed By: shapovalov

Differential Revision: D37690918

fbshipit-source-id: bf2d5fc9d0f1220259e08661dafc69cdbe6b7f94
2022-07-09 17:16:24 -07:00

156 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import random
import tempfile
import unittest
from typing import List
import numpy as np
import torch
import torchvision
from PIL import Image
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import (
JsonIndexDatasetMapProviderV2,
)
from pytorch3d.implicitron.dataset.types import (
dump_dataclass_jgzip,
FrameAnnotation,
ImageAnnotation,
MaskAnnotation,
SequenceAnnotation,
)
from pytorch3d.implicitron.tools.config import expand_args_fields
class TestJsonIndexDatasetProviderV2(unittest.TestCase):
def test_random_dataset(self):
# store random frame annotations
expand_args_fields(JsonIndexDatasetMapProviderV2)
categories = ["A", "B"]
subset_name = "test"
with tempfile.TemporaryDirectory() as tmpd:
_make_random_json_dataset_map_provider_v2_data(tmpd, categories)
for category in categories:
dataset_provider = JsonIndexDatasetMapProviderV2(
category=category,
subset_name="test",
dataset_root=tmpd,
)
dataset_map = dataset_provider.get_dataset_map()
for set_ in ["train", "val", "test"]:
dataloader = torch.utils.data.DataLoader(
getattr(dataset_map, set_),
batch_size=3,
shuffle=True,
collate_fn=FrameData.collate,
)
for _ in dataloader:
pass
category_to_subset_list = (
dataset_provider.get_category_to_subset_name_list()
)
category_to_subset_list_ = {c: [subset_name] for c in categories}
self.assertTrue(category_to_subset_list == category_to_subset_list_)
def _make_random_json_dataset_map_provider_v2_data(
root: str,
categories: List[str],
n_frames: int = 8,
n_sequences: int = 5,
H: int = 50,
W: int = 30,
subset_name: str = "test",
):
os.makedirs(root, exist_ok=True)
category_to_subset_list = {}
for category in categories:
frame_annotations = []
sequence_annotations = []
frame_index = []
for seq_i in range(n_sequences):
seq_name = str(seq_i)
for i in range(n_frames):
# generate and store image
imdir = os.path.join(root, category, seq_name, "images")
os.makedirs(imdir, exist_ok=True)
img_path = os.path.join(imdir, f"frame{i:05d}.jpg")
img = torch.rand(3, H, W)
torchvision.utils.save_image(img, img_path)
# generate and store mask
maskdir = os.path.join(root, category, seq_name, "masks")
os.makedirs(maskdir, exist_ok=True)
mask_path = os.path.join(maskdir, f"frame{i:05d}.png")
mask = np.zeros((H, W))
mask[H // 2 :, W // 2 :] = 1
Image.fromarray((mask * 255.0).astype(np.uint8), mode="L",).convert(
"L"
).save(mask_path)
fa = FrameAnnotation(
sequence_name=seq_name,
frame_number=i,
frame_timestamp=float(i),
image=ImageAnnotation(
path=img_path.replace(os.path.normpath(root) + "/", ""),
size=list(img.shape[-2:]),
),
mask=MaskAnnotation(
path=mask_path.replace(os.path.normpath(root) + "/", ""),
mass=mask.sum().item(),
),
)
frame_annotations.append(fa)
frame_index.append((seq_name, i, fa.image.path))
sequence_annotations.append(
SequenceAnnotation(
sequence_name=seq_name,
category=category,
)
)
dump_dataclass_jgzip(
os.path.join(root, category, "frame_annotations.jgz"),
frame_annotations,
)
dump_dataclass_jgzip(
os.path.join(root, category, "sequence_annotations.jgz"),
sequence_annotations,
)
test_frame_index = frame_index[2::3]
set_list = {
"train": frame_index[0::3],
"val": frame_index[1::3],
"test": test_frame_index,
}
set_lists_dir = os.path.join(root, category, "set_lists")
os.makedirs(set_lists_dir, exist_ok=True)
set_list_file = os.path.join(set_lists_dir, f"set_lists_{subset_name}.json")
with open(set_list_file, "w") as f:
json.dump(set_list, f)
eval_batches = [random.sample(test_frame_index, 5) for _ in range(10)]
eval_b_dir = os.path.join(root, category, "eval_batches")
os.makedirs(eval_b_dir, exist_ok=True)
eval_b_file = os.path.join(eval_b_dir, f"eval_batches_{subset_name}.json")
with open(eval_b_file, "w") as f:
json.dump(eval_batches, f)
category_to_subset_list[category] = [subset_name]
with open(os.path.join(root, "category_to_subset_name_list.json"), "w") as f:
json.dump(category_to_subset_list, f)