pytorch3d/tests/test_points_to_volumes.py
generatedunixname89002005287564 e6a32bfc37 Daily arc lint --take BLACK
Reviewed By: zertosh

Differential Revision: D25800514

fbshipit-source-id: 191b2753b8fcfbe2386c761241aaeb58939a973e
2021-01-06 04:23:26 -08:00

387 lines
14 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
from typing import Tuple
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import add_pointclouds_to_volumes
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.structures.volumes import Volumes
from pytorch3d.transforms.so3 import so3_exponential_map
DEBUG = False
if DEBUG:
import os
import tempfile
from PIL import Image
def init_cube_point_cloud(
batch_size: int = 10, n_points: int = 100000, rotate_y: bool = True
):
"""
Generate a random point cloud of `n_points` whose points of
which are sampled from faces of a 3D cube.
"""
# create the cube mesh batch_size times
meshes = TestPointsToVolumes.init_cube_mesh(batch_size)
# generate point clouds by sampling points from the meshes
pcl = sample_points_from_meshes(meshes, num_samples=n_points, return_normals=False)
# colors of the cube sides
clrs = [
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 0.0, 1.0],
]
# init the color tensor "rgb"
rgb = torch.zeros_like(pcl)
# color each side of the cube with a constant color
clri = 0
for dim in (0, 1, 2):
for offs in (0.0, 1.0):
current_face_verts = (pcl[:, :, dim] - offs).abs() <= 1e-2
for bi in range(batch_size):
rgb[bi, current_face_verts[bi], :] = torch.tensor(clrs[clri]).type_as(
pcl
)
clri += 1
if rotate_y:
# uniformly spaced rotations around y axis
R = init_uniform_y_rotations(batch_size=batch_size)
# rotate the point clouds around y axis
pcl = torch.bmm(pcl - 0.5, R) + 0.5
return pcl, rgb
def init_volume_boundary_pointcloud(
batch_size: int,
volume_size: Tuple[int, int, int],
n_points: int,
interp_mode: str,
require_grad: bool = False,
):
"""
Initialize a point cloud that closely follows a boundary of
a volume with a given size. The volume buffer is initialized as well.
"""
# generate a 3D point cloud sampled from sides of a [0,1] cube
xyz, rgb = init_cube_point_cloud(batch_size, n_points=n_points, rotate_y=True)
# make volume_size tensor
volume_size_t = torch.tensor(volume_size, dtype=xyz.dtype, device=xyz.device)
if interp_mode == "trilinear":
# make the xyz locations fall on the boundary of the
# first/last two voxels along each spatial dimension of the
# volume - this properly checks the correctness of the
# trilinear interpolation scheme
xyz = (xyz - 0.5) * ((volume_size_t - 2) / (volume_size_t - 1))[[2, 1, 0]] + 0.5
# rescale the cube pointcloud to overlap with the volume sides
# of the volume
rel_scale = volume_size_t / volume_size[0]
xyz = xyz * rel_scale[[2, 1, 0]][None, None]
# enable grad accumulation for the differentiability check
xyz.requires_grad = require_grad
rgb.requires_grad = require_grad
# create the pointclouds structure
pointclouds = Pointclouds(xyz, features=rgb)
# set the volume translation so that the point cloud is centered
# around 0
volume_translation = -0.5 * rel_scale[[2, 1, 0]]
# set the voxel size to 1 / (volume_size-1)
volume_voxel_size = 1 / (volume_size[0] - 1.0)
# instantiate the volumes
initial_volumes = Volumes(
features=xyz.new_zeros(batch_size, 3, *volume_size),
densities=xyz.new_zeros(batch_size, 1, *volume_size),
volume_translation=volume_translation,
voxel_size=volume_voxel_size,
)
return pointclouds, initial_volumes
def init_uniform_y_rotations(batch_size: int = 10):
"""
Generate a batch of `batch_size` 3x3 rotation matrices around y-axis
whose angles are uniformly distributed between 0 and 2 pi.
"""
device = torch.device("cuda:0")
axis = torch.tensor([0.0, 1.0, 0.0], device=device, dtype=torch.float32)
angles = torch.linspace(0, 2.0 * np.pi, batch_size + 1, device=device)
angles = angles[:batch_size]
log_rots = axis[None, :] * angles[:, None]
R = so3_exponential_map(log_rots)
return R
class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
np.random.seed(42)
torch.manual_seed(42)
@staticmethod
def add_points_to_volumes(
batch_size: int,
volume_size: Tuple[int, int, int],
n_points: int,
interp_mode: str,
):
(pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
batch_size=batch_size,
volume_size=volume_size,
n_points=n_points,
interp_mode=interp_mode,
require_grad=False,
)
def _add_points_to_volumes():
add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode)
return _add_points_to_volumes
@staticmethod
def stack_4d_tensor_to_3d(arr):
n = arr.shape[0]
H = int(np.ceil(np.sqrt(n)))
W = int(np.ceil(n / H))
n_add = H * W - n
arr = torch.cat((arr, torch.zeros_like(arr[:1]).repeat(n_add, 1, 1, 1)))
rows = torch.chunk(arr, chunks=W, dim=0)
arr3d = torch.cat([torch.cat(list(row), dim=2) for row in rows], dim=1)
return arr3d
@staticmethod
def init_cube_mesh(batch_size: int = 10):
"""
Generate a batch of `batch_size` cube meshes.
"""
device = torch.device("cuda:0")
verts, faces = [], []
for _ in range(batch_size):
v = torch.tensor(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
],
dtype=torch.float32,
device=device,
)
verts.append(v)
faces.append(
torch.tensor(
[
[0, 2, 1],
[0, 3, 2],
[2, 3, 4],
[2, 4, 5],
[1, 2, 5],
[1, 5, 6],
[0, 7, 4],
[0, 4, 3],
[5, 4, 7],
[5, 7, 6],
[0, 6, 7],
[0, 1, 6],
],
dtype=torch.int64,
device=device,
)
)
faces = torch.stack(faces)
verts = torch.stack(verts)
simpleces = Meshes(verts=verts, faces=faces)
return simpleces
def test_from_point_cloud(self, interp_mode="trilinear"):
"""
Generates a volume from a random point cloud sampled from faces
of a 3D cube. Since each side of the cube is homogenously colored with
a different color, this should result in a volume with a
predefined homogenous color of the cells along its borders
and black interior. The test is run for both cube and non-cube shaped
volumes.
"""
# batch_size = 4 sides of the cube
batch_size = 4
for volume_size in ([25, 25, 25], [30, 25, 15]):
for interp_mode in ("trilinear", "nearest"):
(pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
volume_size=volume_size,
n_points=int(1e5),
interp_mode=interp_mode,
batch_size=batch_size,
require_grad=True,
)
volumes = add_pointclouds_to_volumes(
pointclouds, initial_volumes, mode=interp_mode
)
V_color, V_density = volumes.features(), volumes.densities()
# expected colors of different cube sides
clr_sides = torch.tensor(
[
[[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]],
[[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]],
[[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]],
[[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]],
],
dtype=V_color.dtype,
device=V_color.device,
)
clr_ambient = torch.tensor(
[0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device
)
clr_top_bot = torch.tensor(
[[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]],
dtype=V_color.dtype,
device=V_color.device,
)
if DEBUG:
outdir = tempfile.gettempdir() + "/test_points_to_volumes"
os.makedirs(outdir, exist_ok=True)
for slice_dim in (1, 2):
for vidx in range(V_color.shape[0]):
vim = V_color.detach()[vidx].split(1, dim=slice_dim)
vim = torch.stack([v.squeeze() for v in vim])
vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu())
im = Image.fromarray(
(vim.numpy() * 255.0)
.astype(np.uint8)
.transpose(1, 2, 0)
)
outfile = (
outdir
+ f"/rgb_{interp_mode}"
+ f"_{str(volume_size).replace(' ','')}"
+ f"_{vidx:003d}_sldim{slice_dim}.png"
)
im.save(outfile)
print("exported %s" % outfile)
# check the density V_density
# first binarize the density
V_density_bin = (V_density > 1e-4).type_as(V_density)
d_one = V_density.new_ones(1)
d_zero = V_density.new_zeros(1)
for vidx in range(V_color.shape[0]):
# the first/last depth-wise slice has to be filled with 1.0
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_one, "first"
)
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_one, "last"
)
# the middle depth-wise slices have to be empty
self._check_volume_slice_color_density(
V_density_bin[vidx], 1, interp_mode, d_zero, "middle"
)
# the top/bottom slices have to be filled with 1.0
self._check_volume_slice_color_density(
V_density_bin[vidx], 2, interp_mode, d_one, "first"
)
self._check_volume_slice_color_density(
V_density_bin[vidx], 2, interp_mode, d_one, "last"
)
# check the colors
for vidx in range(V_color.shape[0]):
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first"
)
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last"
)
self._check_volume_slice_color_density(
V_color[vidx], 1, interp_mode, clr_ambient, "middle"
)
self._check_volume_slice_color_density(
V_color[vidx], 2, interp_mode, clr_top_bot[0], "first"
)
self._check_volume_slice_color_density(
V_color[vidx], 2, interp_mode, clr_top_bot[1], "last"
)
# check differentiability
loss = V_color.mean() + V_density.mean()
loss.backward()
rgb = pointclouds.features_padded()
xyz = pointclouds.points_padded()
for field in (xyz, rgb):
if interp_mode == "nearest" and (field is xyz):
# this does not produce grads w.r.t. xyz
self.assertIsNone(field.grad)
else:
self.assertTrue(field.grad.data.isfinite().all())
def _check_volume_slice_color_density(
self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
):
# decompose the volume to individual slices along split_dim
vim = V.detach().split(1, dim=split_dim)
vim = torch.stack([v.squeeze(split_dim) for v in vim])
# determine which slices should be compared to clr_gt based on
# the 'slice_type' input
if slice_type == "first":
slice_dims = (0, 1) if interp_mode == "trilinear" else (0,)
elif slice_type == "last":
slice_dims = (-1, -2) if interp_mode == "trilinear" else (-1,)
elif slice_type == "middle":
internal_border = 2 if interp_mode == "trilinear" else 1
slice_dims = torch.arange(internal_border, vim.shape[0] - internal_border)
else:
raise ValueError(slice_type)
# compute the average error within each slice
clr_diff = (
vim[slice_dims, :, border:-border, border:-border]
- clr_gt[None, :, None, None]
)
clr_diff = clr_diff.abs().mean(dim=(2, 3)).view(-1)
# check that all per-slice avg errors vanish
self.assertClose(clr_diff, torch.zeros_like(clr_diff), atol=1e-2)