pytorch3d/tests/test_obj_io.py
Nikhila Ravi c9267ab7af Update load obj and compare with SoftRas
Summary:
Updated the load obj function to support creating of a per face texture map using the information in an .mtl file. Uses the approach from in SoftRasterizer.

Currently I have ported in the SoftRasterizer code but this is only to help with comparison and will  be deleted before landing. The ShapeNet Test data will also be deleted.

Here is the [Design doc](https://docs.google.com/document/d/1AUcLP4QwVSqlfLAUfbjM9ic5vYn9P54Ha8QbcVXW2eI/edit?usp=sharing).

## Added
- texture atlas creation functions in PyTorch based on the SoftRas cuda implementation
- tests to compare SoftRas vs PyTorch3D implementation to verify it matches (using real shapenet data with meshes consisting of multiple textures)
- benchmarks tests

## Remaining todo:
- add more tests for obj io to test the new functions and the two texturing options
- replace the shapenet data with the output from SoftRas saved as a file.

# MAIN FILES TO REVIEW

- `obj_io.py`
- `test_obj_io.py` [still some tests to be added but have comparisons with SoftRas for now]

The reference SoftRas implementations are in `softras_load_obj.py` and `load_textures.cu`.

Reviewed By: gkioxari

Differential Revision: D20754859

fbshipit-source-id: 42ace9dfb73f26e29d800c763f56d5b66c60c5e2
2020-04-23 19:38:35 -07:00

726 lines
28 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import os
import unittest
import warnings
from io import StringIO
from pathlib import Path
import torch
from common_testing import TestCaseMixin
from pytorch3d.io import load_obj, load_objs_as_meshes, save_obj
from pytorch3d.io.mtl_io import (
_bilinear_interpolation_grid_sample,
_bilinear_interpolation_vectorized,
)
from pytorch3d.structures import Meshes, Textures, join_meshes_as_batch
from pytorch3d.utils import torus
class TestMeshObjIO(TestCaseMixin, unittest.TestCase):
def test_load_obj_simple(self):
obj_file = "\n".join(
[
"# this is a comment", # Comments should be ignored.
"v 0.1 0.2 0.3",
"v 0.2 0.3 0.4",
"v 0.3 0.4 0.5",
"v 0.4 0.5 0.6", # some obj files have multiple spaces after v
"f 1 2 3",
"f 1 2 4 3 1", # Polygons should be split into triangles
]
)
obj_file = StringIO(obj_file)
verts, faces, aux = load_obj(obj_file)
normals = aux.normals
textures = aux.verts_uvs
materials = aux.material_colors
tex_maps = aux.texture_images
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor(
[
[0, 1, 2], # First face
[0, 1, 3], # Second face (polygon)
[0, 3, 2], # Second face (polygon)
[0, 2, 0], # Second face (polygon)
],
dtype=torch.int64,
)
self.assertTrue(torch.all(verts == expected_verts))
self.assertTrue(torch.all(faces.verts_idx == expected_faces))
padded_vals = -torch.ones_like(faces.verts_idx)
self.assertTrue(torch.all(faces.normals_idx == padded_vals))
self.assertTrue(torch.all(faces.textures_idx == padded_vals))
self.assertTrue(
torch.all(faces.materials_idx == -torch.ones(len(expected_faces)))
)
self.assertTrue(normals is None)
self.assertTrue(textures is None)
self.assertTrue(materials is None)
self.assertTrue(tex_maps is None)
def test_load_obj_complex(self):
obj_file = "\n".join(
[
"# this is a comment", # Comments should be ignored.
"v 0.1 0.2 0.3",
"v 0.2 0.3 0.4",
"v 0.3 0.4 0.5",
"v 0.4 0.5 0.6",
"vn 0.000000 0.000000 -1.000000",
"vn -1.000000 -0.000000 -0.000000",
"vn -0.000000 -0.000000 1.000000", # Normals should not be ignored.
"v 0.5 0.6 0.7",
"vt 0.749279 0.501284 0.0", # Some files add 0.0 - ignore this.
"vt 0.999110 0.501077",
"vt 0.999455 0.750380",
"f 1 2 3",
"f 1 2 4 3 5", # Polygons should be split into triangles
"f 2/1/2 3/1/2 4/2/2", # Texture/normals are loaded correctly.
"f -1 -2 1", # Negative indexing counts from the end.
]
)
obj_file = StringIO(obj_file)
verts, faces, aux = load_obj(obj_file)
normals = aux.normals
textures = aux.verts_uvs
materials = aux.material_colors
tex_maps = aux.texture_images
expected_verts = torch.tensor(
[
[0.1, 0.2, 0.3],
[0.2, 0.3, 0.4],
[0.3, 0.4, 0.5],
[0.4, 0.5, 0.6],
[0.5, 0.6, 0.7],
],
dtype=torch.float32,
)
expected_faces = torch.tensor(
[
[0, 1, 2], # First face
[0, 1, 3], # Second face (polygon)
[0, 3, 2], # Second face (polygon)
[0, 2, 4], # Second face (polygon)
[1, 2, 3], # Third face (normals / texture)
[4, 3, 0], # Fourth face (negative indices)
],
dtype=torch.int64,
)
expected_normals = torch.tensor(
[
[0.000000, 0.000000, -1.000000],
[-1.000000, -0.000000, -0.000000],
[-0.000000, -0.000000, 1.000000],
],
dtype=torch.float32,
)
expected_textures = torch.tensor(
[[0.749279, 0.501284], [0.999110, 0.501077], [0.999455, 0.750380]],
dtype=torch.float32,
)
expected_faces_normals_idx = -torch.ones_like(expected_faces, dtype=torch.int64)
expected_faces_normals_idx[4, :] = torch.tensor([1, 1, 1], dtype=torch.int64)
expected_faces_textures_idx = -torch.ones_like(
expected_faces, dtype=torch.int64
)
expected_faces_textures_idx[4, :] = torch.tensor([0, 0, 1], dtype=torch.int64)
self.assertTrue(torch.all(verts == expected_verts))
self.assertTrue(torch.all(faces.verts_idx == expected_faces))
self.assertClose(normals, expected_normals)
self.assertClose(textures, expected_textures)
self.assertClose(faces.normals_idx, expected_faces_normals_idx)
self.assertClose(faces.textures_idx, expected_faces_textures_idx)
self.assertTrue(materials is None)
self.assertTrue(tex_maps is None)
def test_load_obj_normals_only(self):
obj_file = "\n".join(
[
"v 0.1 0.2 0.3",
"v 0.2 0.3 0.4",
"v 0.3 0.4 0.5",
"v 0.4 0.5 0.6",
"vn 0.000000 0.000000 -1.000000",
"vn -1.000000 -0.000000 -0.000000",
"f 2//1 3//1 4//2",
]
)
obj_file = StringIO(obj_file)
expected_faces_normals_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
expected_normals = torch.tensor(
[[0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000]],
dtype=torch.float32,
)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
verts, faces, aux = load_obj(obj_file)
normals = aux.normals
textures = aux.verts_uvs
materials = aux.material_colors
tex_maps = aux.texture_images
self.assertClose(faces.normals_idx, expected_faces_normals_idx)
self.assertClose(normals, expected_normals)
self.assertClose(verts, expected_verts)
# Textures idx padded with -1.
self.assertClose(faces.textures_idx, torch.ones_like(faces.verts_idx) * -1)
self.assertTrue(textures is None)
self.assertTrue(materials is None)
self.assertTrue(tex_maps is None)
def test_load_obj_textures_only(self):
obj_file = "\n".join(
[
"v 0.1 0.2 0.3",
"v 0.2 0.3 0.4",
"v 0.3 0.4 0.5",
"v 0.4 0.5 0.6",
"vt 0.999110 0.501077",
"vt 0.999455 0.750380",
"f 2/1 3/1 4/2",
]
)
obj_file = StringIO(obj_file)
expected_faces_textures_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
expected_textures = torch.tensor(
[[0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32
)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
verts, faces, aux = load_obj(obj_file)
normals = aux.normals
textures = aux.verts_uvs
materials = aux.material_colors
tex_maps = aux.texture_images
self.assertClose(faces.textures_idx, expected_faces_textures_idx)
self.assertClose(expected_textures, textures)
self.assertClose(expected_verts, verts)
self.assertTrue(
torch.all(faces.normals_idx == -torch.ones_like(faces.textures_idx))
)
self.assertTrue(normals is None)
self.assertTrue(materials is None)
self.assertTrue(tex_maps is None)
def test_load_obj_error_textures(self):
obj_file = "\n".join(["vt 0.1"])
obj_file = StringIO(obj_file)
with self.assertRaises(ValueError) as err:
load_obj(obj_file)
self.assertTrue("does not have 2 values" in str(err.exception))
def test_load_obj_error_normals(self):
obj_file = "\n".join(["vn 0.1"])
obj_file = StringIO(obj_file)
with self.assertRaises(ValueError) as err:
load_obj(obj_file)
self.assertTrue("does not have 3 values" in str(err.exception))
def test_load_obj_error_vertices(self):
obj_file = "\n".join(["v 1"])
obj_file = StringIO(obj_file)
with self.assertRaises(ValueError) as err:
load_obj(obj_file)
self.assertTrue("does not have 3 values" in str(err.exception))
def test_load_obj_error_inconsistent_triplets(self):
obj_file = "\n".join(["f 2//1 3/1 4/1/2"])
obj_file = StringIO(obj_file)
with self.assertRaises(ValueError) as err:
load_obj(obj_file)
self.assertTrue("Vertex properties are inconsistent" in str(err.exception))
def test_load_obj_error_too_many_vertex_properties(self):
obj_file = "\n".join(["f 2/1/1/3"])
obj_file = StringIO(obj_file)
with self.assertRaises(ValueError) as err:
load_obj(obj_file)
self.assertTrue("Face vertices can ony have 3 properties" in str(err.exception))
def test_load_obj_error_invalid_vertex_indices(self):
obj_file = "\n".join(
["v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "f -2 5 1"]
)
obj_file = StringIO(obj_file)
with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
load_obj(obj_file)
def test_load_obj_error_invalid_normal_indices(self):
obj_file = "\n".join(
[
"v 0.1 0.2 0.3",
"v 0.1 0.2 0.3",
"v 0.1 0.2 0.3",
"vn 0.1 0.2 0.3",
"vn 0.1 0.2 0.3",
"vn 0.1 0.2 0.3",
"f -2/2 2/4 1/1",
]
)
obj_file = StringIO(obj_file)
with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
load_obj(obj_file)
def test_load_obj_error_invalid_texture_indices(self):
obj_file = "\n".join(
[
"v 0.1 0.2 0.3",
"v 0.1 0.2 0.3",
"v 0.1 0.2 0.3",
"vt 0.1 0.2",
"vt 0.1 0.2",
"vt 0.1 0.2",
"f -2//2 2//6 1//1",
]
)
obj_file = StringIO(obj_file)
with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
load_obj(obj_file)
def test_save_obj_invalid_shapes(self):
# Invalid vertices shape
with self.assertRaises(ValueError) as error:
verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]]) # (V, 4)
faces = torch.LongTensor([[0, 1, 2]])
save_obj(StringIO(), verts, faces)
expected_message = (
"Argument 'verts' should either be empty or of shape (num_verts, 3)."
)
self.assertTrue(expected_message, error.exception)
# Invalid faces shape
with self.assertRaises(ValueError) as error:
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2, 3]]) # (F, 4)
save_obj(StringIO(), verts, faces)
expected_message = (
"Argument 'faces' should either be empty or of shape (num_faces, 3)."
)
self.assertTrue(expected_message, error.exception)
def test_save_obj_invalid_indices(self):
message_regex = "Faces have invalid indices"
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_obj(StringIO(), verts, faces)
faces = torch.LongTensor([[-1, 0, 1]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_obj(StringIO(), verts, faces)
def _test_save_load(self, verts, faces):
f = StringIO()
save_obj(f, verts, faces)
f.seek(0)
expected_verts, expected_faces = verts, faces
if not len(expected_verts): # Always compare with a (V, 3) tensor
expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
if not len(expected_faces): # Always compare with an (F, 3) tensor
expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
actual_verts, actual_faces, _ = load_obj(f)
self.assertClose(expected_verts, actual_verts)
self.assertClose(expected_faces, actual_faces.verts_idx)
def test_empty_save_load_obj(self):
# Vertices + empty faces
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([])
self._test_save_load(verts, faces)
faces = torch.zeros(size=(0, 3), dtype=torch.int64)
self._test_save_load(verts, faces)
# Faces + empty vertices
message_regex = "Faces have invalid indices"
verts = torch.FloatTensor([])
faces = torch.LongTensor([[0, 1, 2]])
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
verts = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
# Empty vertices + empty faces
message_regex = "Empty 'verts' and 'faces' arguments provided"
verts0 = torch.FloatTensor([])
faces0 = torch.LongTensor([])
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces0)
faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces3)
verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces0)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces3)
def test_save_obj(self):
verts = torch.tensor(
[[0.01, 0.2, 0.301], [0.2, 0.03, 0.408], [0.3, 0.4, 0.05], [0.6, 0.7, 0.8]],
dtype=torch.float32,
)
faces = torch.tensor(
[[0, 2, 1], [0, 1, 2], [3, 2, 1], [3, 1, 0]], dtype=torch.int64
)
obj_file = StringIO()
save_obj(obj_file, verts, faces, decimal_places=2)
expected_file = "\n".join(
[
"v 0.01 0.20 0.30",
"v 0.20 0.03 0.41",
"v 0.30 0.40 0.05",
"v 0.60 0.70 0.80",
"f 1 3 2",
"f 1 2 3",
"f 4 3 2",
"f 4 2 1",
]
)
actual_file = obj_file.getvalue()
self.assertEqual(actual_file, expected_file)
def test_load_mtl(self):
DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
obj_filename = "cow_mesh/cow.obj"
filename = os.path.join(DATA_DIR, obj_filename)
verts, faces, aux = load_obj(filename)
materials = aux.material_colors
tex_maps = aux.texture_images
dtype = torch.float32
expected_materials = {
"material_1": {
"ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
"diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
"specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype),
"shininess": torch.tensor([10.0], dtype=dtype),
}
}
# Texture atlas is not created as `create_texture_atlas=True` was
# not set in the load_obj args
self.assertTrue(aux.texture_atlas is None)
# Check that there is an image with material name material_1.
self.assertTrue(tuple(tex_maps.keys()) == ("material_1",))
self.assertTrue(torch.is_tensor(tuple(tex_maps.values())[0]))
self.assertTrue(
torch.all(faces.materials_idx == torch.zeros(len(faces.verts_idx)))
)
# Check all keys and values in dictionary are the same.
for n1, n2 in zip(materials.keys(), expected_materials.keys()):
self.assertTrue(n1 == n2)
for k1, k2 in zip(materials[n1].keys(), expected_materials[n2].keys()):
self.assertTrue(
torch.allclose(materials[n1][k1], expected_materials[n2][k2])
)
def test_load_mtl_texture_atlas_compare_softras(self):
# Load saved texture atlas created with SoftRas.
device = torch.device("cuda:0")
DATA_DIR = Path(__file__).resolve().parent.parent
obj_filename = DATA_DIR / "docs/tutorials/data/cow_mesh/cow.obj"
expected_atlas_fname = DATA_DIR / "tests/data/cow_texture_atlas_softras.pt"
# Note, the reference texture atlas generated using SoftRas load_obj function
# is too large to check in to the repo. Download the file to run the test locally.
if not os.path.exists(expected_atlas_fname):
url = "https://dl.fbaipublicfiles.com/pytorch3d/data/tests/cow_texture_atlas_softras.pt"
msg = (
"cow_texture_atlas_softras.pt not found, download from %s, save it at the path %s, and rerun"
% (url, expected_atlas_fname)
)
warnings.warn(msg)
return True
expected_atlas = torch.load(expected_atlas_fname)
_, _, aux = load_obj(
obj_filename,
load_textures=True,
device=device,
create_texture_atlas=True,
texture_atlas_size=15,
texture_wrap="repeat",
)
self.assertClose(expected_atlas, aux.texture_atlas, atol=5e-5)
def test_load_mtl_noload(self):
DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
obj_filename = "cow_mesh/cow.obj"
filename = os.path.join(DATA_DIR, obj_filename)
verts, faces, aux = load_obj(filename, load_textures=False)
self.assertTrue(aux.material_colors is None)
self.assertTrue(aux.texture_images is None)
def test_load_mtl_fail(self):
# Faces have a material
obj_file = "\n".join(
[
"v 0.1 0.2 0.3",
"v 0.2 0.3 0.4",
"v 0.3 0.4 0.5",
"v 0.4 0.5 0.6",
"usemtl material_1",
"f 1 2 3",
"f 1 2 4",
]
)
obj_file = StringIO(obj_file)
with self.assertWarnsRegex(UserWarning, "No mtl file provided"):
verts, faces, aux = load_obj(obj_file)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
self.assertTrue(torch.allclose(verts, expected_verts))
self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
self.assertTrue(aux.material_colors is None)
self.assertTrue(aux.texture_images is None)
self.assertTrue(aux.normals is None)
self.assertTrue(aux.verts_uvs is None)
def test_load_obj_missing_texture(self):
DATA_DIR = Path(__file__).resolve().parent / "data"
obj_filename = "missing_files_obj/model.obj"
filename = os.path.join(DATA_DIR, obj_filename)
with self.assertWarnsRegex(UserWarning, "Texture file does not exist"):
verts, faces, aux = load_obj(filename)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
self.assertTrue(torch.allclose(verts, expected_verts))
self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
def test_load_obj_missing_texture_noload(self):
DATA_DIR = Path(__file__).resolve().parent / "data"
obj_filename = "missing_files_obj/model.obj"
filename = os.path.join(DATA_DIR, obj_filename)
verts, faces, aux = load_obj(filename, load_textures=False)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
self.assertTrue(torch.allclose(verts, expected_verts))
self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
self.assertTrue(aux.material_colors is None)
self.assertTrue(aux.texture_images is None)
def test_load_obj_missing_mtl(self):
DATA_DIR = Path(__file__).resolve().parent / "data"
obj_filename = "missing_files_obj/model2.obj"
filename = os.path.join(DATA_DIR, obj_filename)
with self.assertWarnsRegex(UserWarning, "Mtl file does not exist"):
verts, faces, aux = load_obj(filename)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
self.assertTrue(torch.allclose(verts, expected_verts))
self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
def test_load_obj_missing_mtl_noload(self):
DATA_DIR = Path(__file__).resolve().parent / "data"
obj_filename = "missing_files_obj/model2.obj"
filename = os.path.join(DATA_DIR, obj_filename)
verts, faces, aux = load_obj(filename, load_textures=False)
expected_verts = torch.tensor(
[[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
dtype=torch.float32,
)
expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
self.assertTrue(torch.allclose(verts, expected_verts))
self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
self.assertTrue(aux.material_colors is None)
self.assertTrue(aux.texture_images is None)
def test_join_meshes_as_batch(self):
"""
Test that join_meshes_as_batch and load_objs_as_meshes are consistent
with single meshes.
"""
def check_triple(mesh, mesh3):
"""
Verify that mesh3 is three copies of mesh.
"""
def check_item(x, y):
self.assertEqual(x is None, y is None)
if x is not None:
self.assertClose(torch.cat([x, x, x]), y)
check_item(mesh.verts_padded(), mesh3.verts_padded())
check_item(mesh.faces_padded(), mesh3.faces_padded())
if mesh.textures is not None:
check_item(mesh.textures.maps_padded(), mesh3.textures.maps_padded())
check_item(
mesh.textures.faces_uvs_padded(), mesh3.textures.faces_uvs_padded()
)
check_item(
mesh.textures.verts_uvs_padded(), mesh3.textures.verts_uvs_padded()
)
check_item(
mesh.textures.verts_rgb_padded(), mesh3.textures.verts_rgb_padded()
)
DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
obj_filename = DATA_DIR / "cow_mesh/cow.obj"
mesh = load_objs_as_meshes([obj_filename])
mesh3 = load_objs_as_meshes([obj_filename, obj_filename, obj_filename])
check_triple(mesh, mesh3)
self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3))
mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False)
mesh3_notex = load_objs_as_meshes(
[obj_filename, obj_filename, obj_filename], load_textures=False
)
check_triple(mesh_notex, mesh3_notex)
self.assertIsNone(mesh_notex.textures)
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
vert_tex = torch.tensor(
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
)
tex = Textures(verts_rgb=vert_tex[None, :])
mesh_rgb = Meshes(verts=[verts], faces=[faces], textures=tex)
mesh_rgb3 = join_meshes_as_batch([mesh_rgb, mesh_rgb, mesh_rgb])
check_triple(mesh_rgb, mesh_rgb3)
teapot_obj = DATA_DIR / "teapot.obj"
mesh_teapot = load_objs_as_meshes([teapot_obj])
teapot_verts, teapot_faces = mesh_teapot.get_mesh_verts_faces(0)
mix_mesh = load_objs_as_meshes([obj_filename, teapot_obj], load_textures=False)
self.assertEqual(len(mix_mesh), 2)
self.assertClose(mix_mesh.verts_list()[0], mesh.verts_list()[0])
self.assertClose(mix_mesh.faces_list()[0], mesh.faces_list()[0])
self.assertClose(mix_mesh.verts_list()[1], teapot_verts)
self.assertClose(mix_mesh.faces_list()[1], teapot_faces)
cow3_tea = join_meshes_as_batch([mesh3, mesh_teapot], include_textures=False)
self.assertEqual(len(cow3_tea), 4)
check_triple(mesh_notex, cow3_tea[:3])
self.assertClose(cow3_tea.verts_list()[3], mesh_teapot.verts_list()[0])
self.assertClose(cow3_tea.faces_list()[3], mesh_teapot.faces_list()[0])
@staticmethod
def _bm_save_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
return lambda: save_obj(StringIO(), verts, faces, decimal_places)
@staticmethod
def _bm_load_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
f = StringIO()
save_obj(f, verts, faces, decimal_places)
s = f.getvalue()
# Recreate stream so it's unaffected by how it was created.
return lambda: load_obj(StringIO(s))
@staticmethod
def bm_save_simple_obj_with_init(V: int, F: int):
verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=2)
@staticmethod
def bm_load_simple_obj_with_init(V: int, F: int):
verts = torch.tensor(V * [[0.1, 0.2, 0.3]]).view(-1, 3)
faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=2)
@staticmethod
def bm_save_complex_obj(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=5)
@staticmethod
def bm_load_complex_obj(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=5)
@staticmethod
def bm_load_texture_atlas(R: int):
device = torch.device("cuda:0")
torch.cuda.set_device(device)
DATA_DIR = "/data/users/nikhilar/fbsource/fbcode/vision/fair/pytorch3d/docs/"
obj_filename = os.path.join(DATA_DIR, "tutorials/data/cow_mesh/cow.obj")
torch.cuda.synchronize()
def load():
load_obj(
obj_filename,
load_textures=True,
device=device,
create_texture_atlas=True,
texture_atlas_size=R,
)
torch.cuda.synchronize()
return load
@staticmethod
def bm_bilinear_sampling_vectorized(S: int, F: int, R: int):
device = torch.device("cuda:0")
torch.cuda.set_device(device)
image = torch.rand((S, S, 3))
grid = torch.rand((F, R, R, 2))
torch.cuda.synchronize()
def load():
_bilinear_interpolation_vectorized(image, grid)
torch.cuda.synchronize()
return load
@staticmethod
def bm_bilinear_sampling_grid_sample(S: int, F: int, R: int):
device = torch.device("cuda:0")
torch.cuda.set_device(device)
image = torch.rand((S, S, 3))
grid = torch.rand((F, R, R, 2))
torch.cuda.synchronize()
def load():
_bilinear_interpolation_grid_sample(image, grid)
torch.cuda.synchronize()
return load