pytorch3d/tests/test_points_alignment.py
David Novotny e5b1d6d3a3 Umeyama
Summary:
Umeyama estimates a rigid motion between two sets of corresponding points.

Benchmark output for `bm_points_alignment`

```
Arguments key: [<allow_reflection>_<batch_size>_<dim>_<estimate_scale>_<n_points>_<use_pointclouds>]
Benchmark                                                        Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
CorrespodingPointsAlignment_True_1_3_True_100_False                   7382            9833             68
CorrespodingPointsAlignment_True_1_3_True_10000_False                 8183           10500             62
CorrespodingPointsAlignment_True_1_3_False_100_False                  7301            9263             69
CorrespodingPointsAlignment_True_1_3_False_10000_False                7945            9746             64
CorrespodingPointsAlignment_True_1_20_True_100_False                 13706           41623             37
CorrespodingPointsAlignment_True_1_20_True_10000_False               11044           33766             46
CorrespodingPointsAlignment_True_1_20_False_100_False                 9908           28791             51
CorrespodingPointsAlignment_True_1_20_False_10000_False               9523           18680             53
CorrespodingPointsAlignment_True_10_3_True_100_False                 29585           32026             17
CorrespodingPointsAlignment_True_10_3_True_10000_False               29626           36324             18
CorrespodingPointsAlignment_True_10_3_False_100_False                26013           29253             20
CorrespodingPointsAlignment_True_10_3_False_10000_False              25000           33820             20
CorrespodingPointsAlignment_True_10_20_True_100_False                40955           41592             13
CorrespodingPointsAlignment_True_10_20_True_10000_False              42087           42393             12
CorrespodingPointsAlignment_True_10_20_False_100_False               39863           40381             13
CorrespodingPointsAlignment_True_10_20_False_10000_False             40813           41699             13
CorrespodingPointsAlignment_True_100_3_True_100_False               183146          194745              3
CorrespodingPointsAlignment_True_100_3_True_10000_False             213789          231466              3
CorrespodingPointsAlignment_True_100_3_False_100_False              177805          180796              3
CorrespodingPointsAlignment_True_100_3_False_10000_False            184963          185695              3
CorrespodingPointsAlignment_True_100_20_True_100_False              347181          347325              2
CorrespodingPointsAlignment_True_100_20_True_10000_False            363259          363613              2
CorrespodingPointsAlignment_True_100_20_False_100_False             351769          352496              2
CorrespodingPointsAlignment_True_100_20_False_10000_False           375629          379818              2
CorrespodingPointsAlignment_False_1_3_True_100_False                 11155           13770             45
CorrespodingPointsAlignment_False_1_3_True_10000_False               10743           13938             47
CorrespodingPointsAlignment_False_1_3_False_100_False                 9578           11511             53
CorrespodingPointsAlignment_False_1_3_False_10000_False               9549           11984             53
CorrespodingPointsAlignment_False_1_20_True_100_False                13809           14183             37
CorrespodingPointsAlignment_False_1_20_True_10000_False              14084           15082             36
CorrespodingPointsAlignment_False_1_20_False_100_False               12765           14177             40
CorrespodingPointsAlignment_False_1_20_False_10000_False             12811           13096             40
CorrespodingPointsAlignment_False_10_3_True_100_False                28823           39384             18
CorrespodingPointsAlignment_False_10_3_True_10000_False              27135           27525             19
CorrespodingPointsAlignment_False_10_3_False_100_False               26236           28980             20
CorrespodingPointsAlignment_False_10_3_False_10000_False             42324           45123             12
CorrespodingPointsAlignment_False_10_20_True_100_False              723902          723902              1
CorrespodingPointsAlignment_False_10_20_True_10000_False            220007          252886              3
CorrespodingPointsAlignment_False_10_20_False_100_False              55593           71636              9
CorrespodingPointsAlignment_False_10_20_False_10000_False            44419           71861             12
CorrespodingPointsAlignment_False_100_3_True_100_False              184768          185199              3
CorrespodingPointsAlignment_False_100_3_True_10000_False            198657          213868              3
CorrespodingPointsAlignment_False_100_3_False_100_False             224598          309645              3
CorrespodingPointsAlignment_False_100_3_False_10000_False           197863          202002              3
CorrespodingPointsAlignment_False_100_20_True_100_False             293484          309459              2
CorrespodingPointsAlignment_False_100_20_True_10000_False           327253          366644              2
CorrespodingPointsAlignment_False_100_20_False_100_False            420793          422194              2
CorrespodingPointsAlignment_False_100_20_False_10000_False          462634          485542              2
CorrespodingPointsAlignment_True_1_3_True_100_True                    7664            9909             66
CorrespodingPointsAlignment_True_1_3_True_10000_True                  7190            8366             70
CorrespodingPointsAlignment_True_1_3_False_100_True                   6549            8316             77
CorrespodingPointsAlignment_True_1_3_False_10000_True                 6534            7710             77
CorrespodingPointsAlignment_True_10_3_True_100_True                  29052           32940             18
CorrespodingPointsAlignment_True_10_3_True_10000_True                30526           33453             17
CorrespodingPointsAlignment_True_10_3_False_100_True                 28708           32993             18
CorrespodingPointsAlignment_True_10_3_False_10000_True               30630           35973             17
CorrespodingPointsAlignment_True_100_3_True_100_True                264909          320820              3
CorrespodingPointsAlignment_True_100_3_True_10000_True              310902          322604              2
CorrespodingPointsAlignment_True_100_3_False_100_True               246832          250634              3
CorrespodingPointsAlignment_True_100_3_False_10000_True             276006          289061              2
CorrespodingPointsAlignment_False_1_3_True_100_True                  11421           13757             44
CorrespodingPointsAlignment_False_1_3_True_10000_True                11199           12532             45
CorrespodingPointsAlignment_False_1_3_False_100_True                 11474           15841             44
CorrespodingPointsAlignment_False_1_3_False_10000_True               10384           13188             49
CorrespodingPointsAlignment_False_10_3_True_100_True                 36599           47340             14
CorrespodingPointsAlignment_False_10_3_True_10000_True               40702           50754             13
CorrespodingPointsAlignment_False_10_3_False_100_True                41277           52149             13
CorrespodingPointsAlignment_False_10_3_False_10000_True              34286           37091             15
CorrespodingPointsAlignment_False_100_3_True_100_True               254991          258578              2
CorrespodingPointsAlignment_False_100_3_True_10000_True             257999          261285              2
CorrespodingPointsAlignment_False_100_3_False_100_True              247511          248693              3
CorrespodingPointsAlignment_False_100_3_False_10000_True            251807          263865              3
```

Reviewed By: gkioxari

Differential Revision: D19808389

fbshipit-source-id: 83305a58627d2fc5dcaf3c3015132d8148f28c29
2020-04-02 14:46:51 -07:00

359 lines
12 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import numpy as np
import unittest
import torch
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions
def _apply_pcl_transformation(X, R, T, s=None):
"""
Apply a batch of similarity/rigid transformations, parametrized with
rotation `R`, translation `T` and scale `s`, to an input batch of
point clouds `X`.
"""
if isinstance(X, Pointclouds):
num_points = X.num_points_per_cloud()
X_t = X.points_padded()
else:
X_t = X
if s is not None:
X_t = s[:, None, None] * X_t
X_t = torch.bmm(X_t, R) + T[:, None, :]
if isinstance(X, Pointclouds):
X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
X_t = Pointclouds(X_list)
return X_t
class TestCorrespondingPointsAlignment(unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
@staticmethod
def random_rotation(batch_size, dim, device=None):
"""
Generates a batch of random `dim`-dimensional rotation matrices.
"""
if dim == 3:
R = rotation_conversions.random_rotations(batch_size, device=device)
else:
# generate random rotation matrices with orthogonalization of
# random normal square matrices, followed by a transformation
# that ensures determinant(R)==1
H = torch.randn(
batch_size, dim, dim, dtype=torch.float32, device=device
)
U, _, V = torch.svd(H)
E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
batch_size, 1, 1
)
E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
assert torch.allclose(
torch.det(R), R.new_ones(batch_size), atol=1e-4
)
return R
@staticmethod
def init_point_cloud(
batch_size=10,
n_points=1000,
dim=3,
device=None,
use_pointclouds=False,
random_pcl_size=True,
):
"""
Generate a batch of normally distributed point clouds.
"""
if use_pointclouds:
assert dim == 3, "Pointclouds support only 3-dim points."
# generate a `batch_size` point clouds with number of points
# between 4 and `n_points`
if random_pcl_size:
n_points_per_batch = torch.randint(
low=4,
high=n_points,
size=(batch_size,),
device=device,
dtype=torch.int64,
)
X_list = [
torch.randn(
int(n_pt), dim, device=device, dtype=torch.float32
)
for n_pt in n_points_per_batch
]
X = Pointclouds(X_list)
else:
X = torch.randn(
batch_size,
n_points,
dim,
device=device,
dtype=torch.float32,
)
X = Pointclouds(list(X))
else:
X = torch.randn(
batch_size, n_points, dim, device=device, dtype=torch.float32
)
return X
@staticmethod
def generate_pcl_transformation(
batch_size=10, scale=False, reflect=False, dim=3, device=None
):
"""
Generate a batch of random rigid/similarity transformations.
"""
R = TestCorrespondingPointsAlignment.random_rotation(
batch_size, dim, device=device
)
T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
if scale:
s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
else:
s = torch.ones(batch_size, dtype=torch.float32, device=device)
return R, T, s
@staticmethod
def generate_random_reflection(batch_size=10, dim=3, device=None):
"""
Generate a batch of reflection matrices of shape (batch_size, dim, dim),
where M_i is an identity matrix with one random entry on the
diagonal equal to -1.
"""
# randomly select one of the dimensions to reflect for each
# element in the batch
dim_to_reflect = torch.randint(
low=0,
high=dim,
size=(batch_size,),
device=device,
dtype=torch.int64,
)
# convert dim_to_reflect to a batch of reflection matrices M
M = torch.diag_embed(
(
dim_to_reflect[:, None]
!= torch.arange(dim, device=device, dtype=torch.float32)
).float()
* 2
- 1,
dim1=1,
dim2=2,
)
return M
@staticmethod
def corresponding_points_alignment(
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
allow_reflection=False,
reflect=False,
):
device = torch.device("cuda:0")
# initialize a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
torch.cuda.synchronize()
def run_corresponding_points_alignment():
points_alignment.corresponding_points_alignment(
X,
X_t,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
torch.cuda.synchronize()
return run_corresponding_points_alignment
def test_corresponding_points_alignment(self, batch_size=10):
"""
Tests whether we can estimate a rigid/similarity motion between
a randomly initialized point cloud and its randomly transformed version.
The tests are done for all possible combinations
of the following boolean flags:
- estimate_scale ... Estimate also a scaling component of
the transformation.
- reflect ... The ground truth orthonormal part of the generated
transformation is a reflection (det==-1).
- allow_reflection ... If True, the orthonormal matrix of the
estimated transformation is allowed to be
a reflection (det==-1).
- use_pointclouds ... If True, passes the Pointclouds objects
to corresponding_points_alignment.
"""
# run this for several different point cloud sizes
for n_points in (100, 3, 2, 1, 0):
# run this for several different dimensionalities
for dim in torch.arange(2, 10):
# switches whether we should use the Pointclouds inputs
use_point_clouds_cases = (
(True, False) if dim == 3 and n_points > 3 else (False,)
)
for use_pointclouds in use_point_clouds_cases:
for estimate_scale in (False, True):
for reflect in (False, True):
for allow_reflection in (False, True):
self._test_single_corresponding_points_alignment(
batch_size=10,
n_points=n_points,
dim=int(dim),
use_pointclouds=use_pointclouds,
estimate_scale=estimate_scale,
reflect=reflect,
allow_reflection=allow_reflection,
)
def _test_single_corresponding_points_alignment(
self,
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
reflect=False,
allow_reflection=False,
):
"""
Executes a single test for `corresponding_points_alignment` for a
specific setting of the inputs / outputs.
"""
device = torch.device("cuda:0")
# initialize the a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
if reflect:
# generate random reflection M and apply to the rotations
M = TestCorrespondingPointsAlignment.generate_random_reflection(
batch_size=batch_size, dim=dim, device=device
)
R = torch.bmm(M, R)
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
# run the CorrespondingPointsAlignment algorithm
R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
X,
X_t,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
assert_error_message = (
f"Corresponding_points_alignment assertion failure for "
f"n_points={n_points}, "
f"dim={dim}, "
f"use_pointclouds={use_pointclouds}, "
f"estimate_scale={estimate_scale}, "
f"reflect={reflect}, "
f"allow_reflection={allow_reflection}."
)
if reflect and not allow_reflection:
# check that all rotations have det=1
self._assert_all_close(
torch.det(R_est),
R_est.new_ones(batch_size),
assert_error_message,
)
else:
# check that the estimated tranformation is the same
# as the ground truth
if n_points >= (dim + 1):
# the checks on transforms apply only when
# the problem setup is unambiguous
self._assert_all_close(R_est, R, assert_error_message)
self._assert_all_close(T_est, T, assert_error_message)
self._assert_all_close(s_est, s, assert_error_message)
# check that the orthonormal part of the
# transformation has a correct determinant (+1/-1)
desired_det = R_est.new_ones(batch_size)
if reflect:
desired_det *= -1.0
self._assert_all_close(
torch.det(R_est), desired_det, assert_error_message
)
# check that the transformed point cloud
# X matches X_t
X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
self._assert_all_close(
X_t, X_t_est, assert_error_message, atol=1e-5
)
def _assert_all_close(self, a_, b_, err_message, atol=1e-6):
if isinstance(a_, Pointclouds):
a_ = a_.points_packed()
if isinstance(b_, Pointclouds):
b_ = b_.points_packed()
self.assertTrue(torch.allclose(a_, b_, atol=atol), err_message)