mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Move testing targets from pytorch3d/tests/TARGETS to pytorch3d/TARGETS. Reviewed By: shapovalov Differential Revision: D36186940 fbshipit-source-id: a4c52c4d99351f885e2b0bf870532d530324039b
150 lines
4.5 KiB
Python
150 lines
4.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Test number of channels."""
|
|
import logging
|
|
import sys
|
|
import unittest
|
|
from os import path
|
|
|
|
import torch
|
|
|
|
from ..common_testing import TestCaseMixin
|
|
|
|
|
|
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
|
|
devices = [torch.device("cuda"), torch.device("cpu")]
|
|
|
|
|
|
class TestChannels(TestCaseMixin, unittest.TestCase):
|
|
"""Test different numbers of channels."""
|
|
|
|
def test_basic(self):
|
|
"""Basic forward test."""
|
|
import torch
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
n_points = 10
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer_1 = Renderer(width, height, n_points, n_channels=1)
|
|
renderer_3 = Renderer(width, height, n_points, n_channels=3)
|
|
renderer_8 = Renderer(width, height, n_points, n_channels=8)
|
|
# Generate sample data.
|
|
torch.manual_seed(1)
|
|
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
|
|
vert_pos[:, 2] += 25.0
|
|
vert_pos[:, :2] -= 5.0
|
|
vert_col = torch.rand(n_points, 8, dtype=torch.float32)
|
|
vert_rad = torch.rand(n_points, dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
renderer_1 = renderer_1.to(device)
|
|
renderer_3 = renderer_3.to(device)
|
|
renderer_8 = renderer_8.to(device)
|
|
result_1 = (
|
|
renderer_1.forward(
|
|
vert_pos,
|
|
vert_col[:, :1],
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
hits_1 = (
|
|
renderer_1.forward(
|
|
vert_pos,
|
|
vert_col[:, :1],
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
result_3 = (
|
|
renderer_3.forward(
|
|
vert_pos,
|
|
vert_col[:, :3],
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
hits_3 = (
|
|
renderer_3.forward(
|
|
vert_pos,
|
|
vert_col[:, :3],
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
result_8 = (
|
|
renderer_8.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
hits_8 = (
|
|
renderer_8.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
self.assertClose(result_1, result_3[:, :, :1])
|
|
self.assertClose(result_3, result_8[:, :, :3])
|
|
self.assertClose(hits_1, hits_3)
|
|
self.assertClose(hits_8, hits_3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO)
|
|
unittest.main()
|