pytorch3d/packaging/pkg_helpers.bash
Jeremy Reizenstein d220ee2f66 pulsar build and CI changes
Summary:
Changes to CI and some minor fixes now that pulsar is part of pytorch3d. Most significantly, add CUB to CI builds.

Make CUB_HOME override the CUB already in cudatoolkit (important for cuda11.0 which uses cub 1.9.9 which pulsar doesn't work well with.
Make imageio available for testing.
Lint fixes.
Fix some test verbosity.
Avoid use of atomicAdd_block on older GPUs.

Reviewed By: nikhilaravi, classner

Differential Revision: D24773716

fbshipit-source-id: 2428356bb2e62735f2bc0c15cbe4cff35b1b24b8
2020-11-10 09:38:05 -08:00

317 lines
12 KiB
Bash

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# shellcheck shell=bash
# A set of useful bash functions for common functionality we need to do in
# many build scripts
# Setup CUDA environment variables, based on CU_VERSION
#
# Inputs:
# CU_VERSION (cu92, cu100, cu101, cu102)
# NO_CUDA_PACKAGE (bool)
# BUILD_TYPE (conda, wheel)
#
# Outputs:
# VERSION_SUFFIX (e.g., "")
# PYTORCH_VERSION_SUFFIX (e.g., +cpu)
# WHEEL_DIR (e.g., cu100/)
# CUDA_HOME (e.g., /usr/local/cuda-9.2, respected by torch.utils.cpp_extension)
# FORCE_CUDA (respected by pytorch3d setup.py)
# NVCC_FLAGS (respected by pytorch3d setup.py)
#
# Precondition: CUDA versions are installed in their conventional locations in
# /usr/local/cuda-*
#
# NOTE: Why VERSION_SUFFIX versus PYTORCH_VERSION_SUFFIX? If you're building
# a package with CUDA on a platform we support CUDA on, VERSION_SUFFIX ==
# PYTORCH_VERSION_SUFFIX and everyone is happy. However, if you are building a
# package with only CPU bits (e.g., torchaudio), then VERSION_SUFFIX is always
# empty, but PYTORCH_VERSION_SUFFIX is +cpu (because that's how you get a CPU
# version of a Python package. But that doesn't apply if you're on OS X,
# since the default CU_VERSION on OS X is cpu.
setup_cuda() {
# First, compute version suffixes. By default, assume no version suffixes
export VERSION_SUFFIX=""
export PYTORCH_VERSION_SUFFIX=""
export WHEEL_DIR=""
# Wheel builds need suffixes (but not if they're on OS X, which never has suffix)
if [[ "$BUILD_TYPE" == "wheel" ]] && [[ "$(uname)" != Darwin ]]; then
# The default CUDA has no suffix
if [[ "$CU_VERSION" != "cu102" ]]; then
export PYTORCH_VERSION_SUFFIX="+$CU_VERSION"
fi
# Match the suffix scheme of pytorch, unless this package does not have
# CUDA builds (in which case, use default)
if [[ -z "$NO_CUDA_PACKAGE" ]]; then
export VERSION_SUFFIX="$PYTORCH_VERSION_SUFFIX"
export WHEEL_DIR="$CU_VERSION/"
fi
fi
# Now work out the CUDA settings
case "$CU_VERSION" in
cu110)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.0"
else
export CUDA_HOME=/usr/local/cuda-11.0/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_50,code=compute_50"
;;
cu102)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.2"
else
export CUDA_HOME=/usr/local/cuda-10.2/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu101)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1"
else
export CUDA_HOME=/usr/local/cuda-10.1/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu100)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0"
else
export CUDA_HOME=/usr/local/cuda-10.0/
fi
export FORCE_CUDA=1
# Hard-coding gencode flags is temporary situation until
# https://github.com/pytorch/pytorch/pull/23408 lands
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu92)
if [[ "$OSTYPE" == "msys" ]]; then
export CUDA_HOME="C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v9.2"
else
export CUDA_HOME=/usr/local/cuda-9.2/
fi
export FORCE_CUDA=1
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_50,code=compute_50"
;;
cpu)
;;
*)
echo "Unrecognized CU_VERSION=$CU_VERSION"
exit 1
;;
esac
}
# Populate build version if necessary, and add version suffix
#
# Inputs:
# BUILD_VERSION (e.g., 0.2.0 or empty)
# VERSION_SUFFIX (e.g., +cpu)
#
# Outputs:
# BUILD_VERSION (e.g., 0.2.0.dev20190807+cpu)
#
# Fill BUILD_VERSION if it doesn't exist already with a nightly string
# Usage: setup_build_version 0.2.0
setup_build_version() {
if [[ -z "$BUILD_VERSION" ]]; then
export BUILD_VERSION="$1.dev$(date "+%Y%m%d")$VERSION_SUFFIX"
else
export BUILD_VERSION="$BUILD_VERSION$VERSION_SUFFIX"
fi
}
# Set some useful variables for OS X, if applicable
setup_macos() {
if [[ "$(uname)" == Darwin ]]; then
export MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++
fi
}
# Top-level entry point for things every package will need to do
#
# Usage: setup_env 0.2.0
setup_env() {
setup_cuda
setup_build_version "$1"
setup_macos
}
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Inputs:
# PYTHON_VERSION (2.7, 3.5, 3.6, 3.7)
# UNICODE_ABI (bool)
#
# Outputs:
# PATH modified to put correct Python version in PATH
#
# Precondition: If Linux, you are in a soumith/manylinux-cuda* Docker image
setup_wheel_python() {
if [[ "$(uname)" == Darwin ]]; then
eval "$(conda shell.bash hook)"
conda env remove -n "env$PYTHON_VERSION" || true
conda create -yn "env$PYTHON_VERSION" python="$PYTHON_VERSION"
conda activate "env$PYTHON_VERSION"
else
case "$PYTHON_VERSION" in
2.7)
if [[ -n "$UNICODE_ABI" ]]; then
python_abi=cp27-cp27mu
else
python_abi=cp27-cp27m
fi
;;
3.5) python_abi=cp35-cp35m ;;
3.6) python_abi=cp36-cp36m ;;
3.7) python_abi=cp37-cp37m ;;
3.8) python_abi=cp38-cp38 ;;
*)
echo "Unrecognized PYTHON_VERSION=$PYTHON_VERSION"
exit 1
;;
esac
export PATH="/opt/python/$python_abi/bin:$PATH"
fi
}
# Install with pip a bit more robustly than the default
pip_install() {
retry pip install --progress-bar off "$@"
}
# Install torch with pip, respecting PYTORCH_VERSION, and record the installed
# version into PYTORCH_VERSION, if applicable
setup_pip_pytorch_version() {
if [[ -z "$PYTORCH_VERSION" ]]; then
# Install latest prerelease version of torch, per our nightlies, consistent
# with the requested cuda version
pip_install --pre torch -f "https://download.pytorch.org/whl/nightly/${WHEEL_DIR}torch_nightly.html"
if [[ "$CUDA_VERSION" == "cpu" ]]; then
# CUDA and CPU are ABI compatible on the CPU-only parts, so strip
# in this case
export PYTORCH_VERSION="$(pip show torch | grep ^Version: | sed 's/Version: *//' | sed 's/+.\+//')"
else
export PYTORCH_VERSION="$(pip show torch | grep ^Version: | sed 's/Version: *//')"
fi
else
pip_install "torch==$PYTORCH_VERSION$CUDA_SUFFIX" \
-f https://download.pytorch.org/whl/torch_stable.html \
-f https://download.pytorch.org/whl/nightly/torch_nightly.html
fi
}
# Fill PYTORCH_VERSION with the latest conda nightly version, and
# CONDA_CHANNEL_FLAGS with appropriate flags to retrieve these versions
#
# You MUST have populated CUDA_SUFFIX before hand.
setup_conda_pytorch_constraint() {
if [[ -z "$PYTORCH_VERSION" ]]; then
export CONDA_CHANNEL_FLAGS="-c pytorch-nightly"
export PYTORCH_VERSION="$(conda search --json 'pytorch[channel=pytorch-nightly]' | \
python -c "import os, sys, json, re; cuver = os.environ.get('CU_VERSION'); \
cuver_1 = cuver.replace('cu', 'cuda') if cuver != 'cpu' else cuver; \
cuver_2 = (cuver[:-1] + '.' + cuver[-1]).replace('cu', 'cuda') if cuver != 'cpu' else cuver; \
print(re.sub(r'\\+.*$', '', \
[x['version'] for x in json.load(sys.stdin)['pytorch'] \
if (x['platform'] == 'darwin' or cuver_1 in x['fn'] or cuver_2 in x['fn']) \
and 'py' + os.environ['PYTHON_VERSION'] in x['fn']][-1]))")"
if [[ -z "$PYTORCH_VERSION" ]]; then
echo "PyTorch version auto detection failed"
echo "No package found for CU_VERSION=$CU_VERSION and PYTHON_VERSION=$PYTHON_VERSION"
exit 1
fi
else
export CONDA_CHANNEL_FLAGS="-c pytorch -c pytorch-nightly"
fi
if [[ "$CU_VERSION" == cpu ]]; then
export CONDA_PYTORCH_BUILD_CONSTRAINT="- pytorch==$PYTORCH_VERSION${PYTORCH_VERSION_SUFFIX}"
export CONDA_PYTORCH_CONSTRAINT="- pytorch==$PYTORCH_VERSION"
else
export CONDA_PYTORCH_BUILD_CONSTRAINT="- pytorch==${PYTORCH_VERSION}${PYTORCH_VERSION_SUFFIX}"
export CONDA_PYTORCH_CONSTRAINT="- pytorch==${PYTORCH_VERSION}${PYTORCH_VERSION_SUFFIX}"
fi
export PYTORCH_VERSION_NODOT=${PYTORCH_VERSION//./}
}
# Translate CUDA_VERSION into CUDA_CUDATOOLKIT_CONSTRAINT
setup_conda_cudatoolkit_constraint() {
export CONDA_CPUONLY_FEATURE=""
export CONDA_CUB_CONSTRAINT=""
if [[ "$(uname)" == Darwin ]]; then
export CONDA_CUDATOOLKIT_CONSTRAINT=""
else
case "$CU_VERSION" in
cu110)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=11.0,<11.1 # [not osx]"
# Even though cudatoolkit 11.0 provides CUB we need our own, to control the
# version, because the built-in 1.9.9 in the cudatoolkit causes problems.
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu102)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.2,<10.3 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu101)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.1,<10.2 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu100)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=10.0,<10.1 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cu92)
export CONDA_CUDATOOLKIT_CONSTRAINT="- cudatoolkit >=9.2,<9.3 # [not osx]"
export CONDA_CUB_CONSTRAINT="- nvidiacub"
;;
cpu)
export CONDA_CUDATOOLKIT_CONSTRAINT=""
export CONDA_CPUONLY_FEATURE="- cpuonly"
;;
*)
echo "Unrecognized CU_VERSION=$CU_VERSION"
exit 1
;;
esac
fi
}
# Build the proper compiler package before building the final package
setup_visual_studio_constraint() {
if [[ "$OSTYPE" == "msys" ]]; then
export VSTOOLCHAIN_PACKAGE=vs2019
export VSDEVCMD_ARGS=''
# shellcheck disable=SC2086
conda build $CONDA_CHANNEL_FLAGS --no-anaconda-upload packaging/$VSTOOLCHAIN_PACKAGE
cp packaging/$VSTOOLCHAIN_PACKAGE/conda_build_config.yaml packaging/pytorch3d/conda_build_config.yaml
fi
}
download_nvidiacub_if_needed() {
case "$CU_VERSION" in
cu110|cu102|cu101|cu100|cu92)
echo "Downloading cub"
wget --no-verbose https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
CUB_HOME=$(realpath ./cub-1.10.0)
export CUB_HOME
echo "CUB_HOME is now $CUB_HOME"
;;
esac
# We don't need CUB for a cpu build or if cuda is 11.1 or higher
}