mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
127 lines
4.3 KiB
Python
127 lines
4.3 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import unittest
|
|
import torch
|
|
|
|
from pytorch3d.structures import utils as struct_utils
|
|
|
|
from common_testing import TestCaseMixin
|
|
|
|
|
|
class TestStructUtils(TestCaseMixin, unittest.TestCase):
|
|
def test_list_to_padded(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
ndim = 2
|
|
x = []
|
|
for _ in range(N):
|
|
dims = torch.randint(K, size=(ndim,)).tolist()
|
|
x.append(torch.rand(dims, device=device))
|
|
pad_size = [K] * ndim
|
|
x_padded = struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
self.assertEqual(x_padded.shape[1], K)
|
|
self.assertEqual(x_padded.shape[2], K)
|
|
for i in range(N):
|
|
self.assertClose(
|
|
x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i]
|
|
)
|
|
|
|
# check for no pad size (defaults to max dimension)
|
|
x_padded = struct_utils.list_to_padded(
|
|
x, pad_value=0.0, equisized=False
|
|
)
|
|
max_size0 = max(y.shape[0] for y in x)
|
|
max_size1 = max(y.shape[1] for y in x)
|
|
self.assertEqual(x_padded.shape[1], max_size0)
|
|
self.assertEqual(x_padded.shape[2], max_size1)
|
|
for i in range(N):
|
|
self.assertClose(
|
|
x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i]
|
|
)
|
|
|
|
# check for equisized
|
|
x = [torch.rand((K, 10), device=device) for _ in range(N)]
|
|
x_padded = struct_utils.list_to_padded(x, equisized=True)
|
|
self.assertClose(x_padded, torch.stack(x, 0))
|
|
|
|
# catch ValueError for invalid dimensions
|
|
with self.assertRaisesRegex(ValueError, "Pad size must"):
|
|
pad_size = [K] * 4
|
|
struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
# invalid input tensor dimensions
|
|
x = []
|
|
ndim = 3
|
|
for _ in range(N):
|
|
dims = torch.randint(K, size=(ndim,)).tolist()
|
|
x.append(torch.rand(dims, device=device))
|
|
pad_size = [K] * 2
|
|
with self.assertRaisesRegex(ValueError, "Supports only"):
|
|
x_padded = struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
def test_padded_to_list(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
ndim = 2
|
|
dims = [K] * ndim
|
|
x = torch.rand([N] + dims, device=device)
|
|
|
|
x_list = struct_utils.padded_to_list(x)
|
|
for i in range(N):
|
|
self.assertClose(x_list[i], x[i])
|
|
|
|
split_size = torch.randint(1, K, size=(N,)).tolist()
|
|
x_list = struct_utils.padded_to_list(x, split_size)
|
|
for i in range(N):
|
|
self.assertClose(x_list[i], x[i, : split_size[i]])
|
|
|
|
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
|
|
x_list = struct_utils.padded_to_list(x, split_size)
|
|
for i in range(N):
|
|
self.assertClose(
|
|
x_list[i], x[i, : split_size[i][0], : split_size[i][1]]
|
|
)
|
|
|
|
with self.assertRaisesRegex(ValueError, "Supports only"):
|
|
x = torch.rand((N, K, K, K, K), device=device)
|
|
split_size = torch.randint(1, K, size=(N,)).tolist()
|
|
struct_utils.padded_to_list(x, split_size)
|
|
|
|
def test_list_to_packed(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
x, x_dims = [], []
|
|
dim2 = torch.randint(K, size=(1,)).item()
|
|
for _ in range(N):
|
|
dim1 = torch.randint(K, size=(1,)).item()
|
|
x_dims.append(dim1)
|
|
x.append(torch.rand([dim1, dim2], device=device))
|
|
|
|
out = struct_utils.list_to_packed(x)
|
|
x_packed = out[0]
|
|
num_items = out[1]
|
|
item_packed_first_idx = out[2]
|
|
item_packed_to_list_idx = out[3]
|
|
|
|
cur = 0
|
|
for i in range(N):
|
|
self.assertTrue(num_items[i] == x_dims[i])
|
|
self.assertTrue(item_packed_first_idx[i] == cur)
|
|
self.assertTrue(
|
|
item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all()
|
|
)
|
|
self.assertClose(x_packed[cur : cur + x_dims[i]], x[i])
|
|
cur += x_dims[i]
|