mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
189 lines
7.3 KiB
Python
189 lines
7.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from common_testing import TestCaseMixin
|
|
from pytorch3d.structures import utils as struct_utils
|
|
|
|
|
|
class TestStructUtils(TestCaseMixin, unittest.TestCase):
|
|
def test_list_to_padded(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
ndim = 2
|
|
x = []
|
|
for _ in range(N):
|
|
dims = torch.randint(K, size=(ndim,)).tolist()
|
|
x.append(torch.rand(dims, device=device))
|
|
pad_size = [K] * ndim
|
|
x_padded = struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
self.assertEqual(x_padded.shape[1], K)
|
|
self.assertEqual(x_padded.shape[2], K)
|
|
for i in range(N):
|
|
self.assertClose(x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i])
|
|
|
|
# check for no pad size (defaults to max dimension)
|
|
x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False)
|
|
max_size0 = max(y.shape[0] for y in x)
|
|
max_size1 = max(y.shape[1] for y in x)
|
|
self.assertEqual(x_padded.shape[1], max_size0)
|
|
self.assertEqual(x_padded.shape[2], max_size1)
|
|
for i in range(N):
|
|
self.assertClose(x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i])
|
|
|
|
# check for equisized
|
|
x = [torch.rand((K, 10), device=device) for _ in range(N)]
|
|
x_padded = struct_utils.list_to_padded(x, equisized=True)
|
|
self.assertClose(x_padded, torch.stack(x, 0))
|
|
|
|
# catch ValueError for invalid dimensions
|
|
with self.assertRaisesRegex(ValueError, "Pad size must"):
|
|
pad_size = [K] * 4
|
|
struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
# invalid input tensor dimensions
|
|
x = []
|
|
ndim = 3
|
|
for _ in range(N):
|
|
dims = torch.randint(K, size=(ndim,)).tolist()
|
|
x.append(torch.rand(dims, device=device))
|
|
pad_size = [K] * 2
|
|
with self.assertRaisesRegex(ValueError, "Supports only"):
|
|
x_padded = struct_utils.list_to_padded(
|
|
x, pad_size=pad_size, pad_value=0.0, equisized=False
|
|
)
|
|
|
|
def test_padded_to_list(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
ndim = 2
|
|
dims = [K] * ndim
|
|
x = torch.rand([N] + dims, device=device)
|
|
|
|
x_list = struct_utils.padded_to_list(x)
|
|
for i in range(N):
|
|
self.assertClose(x_list[i], x[i])
|
|
|
|
split_size = torch.randint(1, K, size=(N,)).tolist()
|
|
x_list = struct_utils.padded_to_list(x, split_size)
|
|
for i in range(N):
|
|
self.assertClose(x_list[i], x[i, : split_size[i]])
|
|
|
|
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
|
|
x_list = struct_utils.padded_to_list(x, split_size)
|
|
for i in range(N):
|
|
self.assertClose(x_list[i], x[i, : split_size[i][0], : split_size[i][1]])
|
|
|
|
with self.assertRaisesRegex(ValueError, "Supports only"):
|
|
x = torch.rand((N, K, K, K, K), device=device)
|
|
split_size = torch.randint(1, K, size=(N,)).tolist()
|
|
struct_utils.padded_to_list(x, split_size)
|
|
|
|
def test_padded_to_packed(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
ndim = 2
|
|
dims = [K] * ndim
|
|
x = torch.rand([N] + dims, device=device)
|
|
|
|
# Case 1: no split_size or pad_value provided
|
|
# Check output is just the flattened input.
|
|
x_packed = struct_utils.padded_to_packed(x)
|
|
self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2]))
|
|
self.assertClose(x_packed, x.reshape(-1, K))
|
|
|
|
# Case 2: pad_value is provided.
|
|
# Check each section of the packed tensor matches the
|
|
# corresponding unpadded elements of the padded tensor.
|
|
# Check that only rows where all the values are padded
|
|
# are removed in the conversion to packed.
|
|
pad_value = -1
|
|
x_list = []
|
|
split_size = []
|
|
for _ in range(N):
|
|
dim = torch.randint(K, size=(1,)).item()
|
|
# Add some random values in the input which are the same as the pad_value.
|
|
# These should not be filtered out.
|
|
x_list.append(
|
|
torch.randint(low=pad_value, high=10, size=(dim, K), device=device)
|
|
)
|
|
split_size.append(dim)
|
|
x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value)
|
|
x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value)
|
|
curr = 0
|
|
for i in range(N):
|
|
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
|
|
self.assertClose(torch.cat(x_list), x_packed)
|
|
curr += split_size[i]
|
|
|
|
# Case 3: split_size is provided.
|
|
# Check each section of the packed tensor matches the corresponding
|
|
# unpadded elements.
|
|
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
|
|
curr = 0
|
|
for i in range(N):
|
|
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
|
|
self.assertClose(torch.cat(x_list), x_packed)
|
|
curr += split_size[i]
|
|
|
|
# Case 4: split_size of the wrong shape is provided.
|
|
# Raise an error.
|
|
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
|
|
with self.assertRaisesRegex(ValueError, "1-dimensional"):
|
|
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
|
|
|
|
split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist()
|
|
with self.assertRaisesRegex(
|
|
ValueError, "same length as inputs first dimension"
|
|
):
|
|
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
|
|
|
|
# Case 5: both pad_value and split_size are provided.
|
|
# Raise an error.
|
|
with self.assertRaisesRegex(ValueError, "Only one of"):
|
|
x_packed = struct_utils.padded_to_packed(
|
|
x_padded, split_size=split_size, pad_value=-1
|
|
)
|
|
|
|
# Case 6: Input has more than 3 dims.
|
|
# Raise an error.
|
|
with self.assertRaisesRegex(ValueError, "Supports only"):
|
|
x = torch.rand((N, K, K, K, K), device=device)
|
|
split_size = torch.randint(1, K, size=(N,)).tolist()
|
|
struct_utils.padded_to_list(x, split_size)
|
|
|
|
def test_list_to_packed(self):
|
|
device = torch.device("cuda:0")
|
|
N = 5
|
|
K = 20
|
|
x, x_dims = [], []
|
|
dim2 = torch.randint(K, size=(1,)).item()
|
|
for _ in range(N):
|
|
dim1 = torch.randint(K, size=(1,)).item()
|
|
x_dims.append(dim1)
|
|
x.append(torch.rand([dim1, dim2], device=device))
|
|
|
|
out = struct_utils.list_to_packed(x)
|
|
x_packed = out[0]
|
|
num_items = out[1]
|
|
item_packed_first_idx = out[2]
|
|
item_packed_to_list_idx = out[3]
|
|
|
|
cur = 0
|
|
for i in range(N):
|
|
self.assertTrue(num_items[i] == x_dims[i])
|
|
self.assertTrue(item_packed_first_idx[i] == cur)
|
|
self.assertTrue(item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all())
|
|
self.assertClose(x_packed[cur : cur + x_dims[i]], x[i])
|
|
cur += x_dims[i]
|