pytorch3d/pytorch3d/io/ply_io.py
Patrick Labatut d57daa6f85 Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)

Reviewed By: nikhilaravi

Differential Revision: D20558373

fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
2020-03-29 14:51:02 -07:00

725 lines
26 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""This module implements utility functions for loading and saving meshes."""
import pathlib
import struct
import sys
import warnings
from collections import namedtuple
from typing import Optional, Tuple
import numpy as np
import torch
_PlyTypeData = namedtuple("_PlyTypeData", "size struct_char np_type")
_PLY_TYPES = {
"char": _PlyTypeData(1, "b", np.byte),
"uchar": _PlyTypeData(1, "B", np.ubyte),
"short": _PlyTypeData(2, "h", np.short),
"ushort": _PlyTypeData(2, "H", np.ushort),
"int": _PlyTypeData(4, "i", np.int32),
"uint": _PlyTypeData(4, "I", np.uint32),
"float": _PlyTypeData(4, "f", np.float32),
"double": _PlyTypeData(8, "d", np.float64),
}
_Property = namedtuple("_Property", "name data_type list_size_type")
class _PlyElementType:
"""
Description of an element of a Ply file.
Members:
self.properties: (List[_Property]) description of all the properties.
Each one contains a name and data type.
self.count: (int) number of such elements in the file
self.name: (str) name of the element
"""
def __init__(self, name: str, count: int):
self.name = name
self.count = count
self.properties = []
def add_property(
self, name: str, data_type: str, list_size_type: Optional[str] = None
):
"""Adds a new property.
Args:
name: (str) name of the property.
data_type: (str) PLY data type.
list_size_type: (str) PLY data type of the list size, or None if not
a list.
"""
for property in self.properties:
if property.name == name:
msg = "Cannot have two properties called %s in %s."
raise ValueError(msg % (name, self.name))
self.properties.append(_Property(name, data_type, list_size_type))
def is_fixed_size(self) -> bool:
"""Return whether the Element has no list properties
Returns:
True if none of the properties are lists.
"""
for property in self.properties:
if property.list_size_type is not None:
return False
return True
def is_constant_type_fixed_size(self) -> bool:
"""Return whether the Element has all properties of the same non-list
type.
Returns:
True if none of the properties are lists and all the properties
share a type.
"""
if not self.is_fixed_size():
return False
first_type = self.properties[0].data_type
for property in self.properties:
if property.data_type != first_type:
return False
return True
def try_constant_list(self) -> bool:
"""Whether the element is just a single list, which might have a
constant size, and therefore we could try to parse quickly with numpy.
Returns:
True if the only property is a list.
"""
if len(self.properties) != 1:
return False
if self.properties[0].list_size_type is None:
return False
return True
class _PlyHeader:
def __init__(self, f):
"""
Load a header of a Ply file from a file-like object.
Members:
self.elements: (List[_PlyElementType]) element description
self.ascii: (bool) Whether in ascii format
self.big_endian: (bool) (if not ascii) whether big endian
self.obj_info: (dict) arbitrary extra data
Args:
f: file-like object.
"""
if f.readline() not in [b"ply\n", b"ply\r\n", "ply\n"]:
raise ValueError("Invalid file header.")
seen_format = False
self.elements = []
self.obj_info = {}
while True:
line = f.readline()
if isinstance(line, bytes):
line = line.decode("ascii")
line = line.strip()
if line == "end_header":
if not self.elements:
raise ValueError("No elements found.")
if not self.elements[-1].properties:
raise ValueError("Found an element with no properties.")
if not seen_format:
raise ValueError("No format line found.")
break
if not seen_format:
if line == "format ascii 1.0":
seen_format = True
self.ascii = True
continue
if line == "format binary_little_endian 1.0":
seen_format = True
self.ascii = False
self.big_endian = False
continue
if line == "format binary_big_endian 1.0":
seen_format = True
self.ascii = False
self.big_endian = True
continue
if line.startswith("format"):
raise ValueError("Invalid format line.")
if line.startswith("comment") or len(line) == 0:
continue
if line.startswith("element"):
self._parse_element(line)
continue
if line.startswith("obj_info"):
items = line.split(" ")
if len(items) != 3:
raise ValueError("Invalid line: %s" % line)
self.obj_info[items[1]] = items[2]
continue
if line.startswith("property"):
self._parse_property(line)
continue
raise ValueError("Invalid line: %s." % line)
def _parse_property(self, line: str):
"""
Decode a ply file header property line.
Args:
line: (str) the ply file's line.
"""
if not self.elements:
raise ValueError("Encountered property before any element.")
items = line.split(" ")
if len(items) not in [3, 5]:
raise ValueError("Invalid line: %s" % line)
datatype = items[1]
name = items[-1]
if datatype == "list":
datatype = items[3]
list_size_type = items[2]
if list_size_type not in _PLY_TYPES:
raise ValueError("Invalid datatype: %s" % list_size_type)
else:
list_size_type = None
if datatype not in _PLY_TYPES:
raise ValueError("Invalid datatype: %s" % datatype)
self.elements[-1].add_property(name, datatype, list_size_type)
def _parse_element(self, line: str):
"""
Decode a ply file header element line.
Args:
line: (str) the ply file's line.
"""
if self.elements and not self.elements[-1].properties:
raise ValueError("Found an element with no properties.")
items = line.split(" ")
if len(items) != 3:
raise ValueError("Invalid line: %s" % line)
try:
count = int(items[2])
except ValueError:
msg = "Number of items for %s was not a number."
raise ValueError(msg % items[1])
self.elements.append(_PlyElementType(items[1], count))
def _read_ply_fixed_size_element_ascii(f, definition: _PlyElementType):
"""
Given an element which has no lists and one type, read the
corresponding data.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
Returns:
2D numpy array corresponding to the data. The rows are the different
values. There is one column for each property.
"""
np_type = _PLY_TYPES[definition.properties[0].data_type].np_type
data = np.loadtxt(
f, dtype=np_type, comments=None, ndmin=2, max_rows=definition.count
)
if data.shape[1] != len(definition.properties):
raise ValueError("Inconsistent data for %s." % definition.name)
if data.shape[0] != definition.count:
raise ValueError("Not enough data for %s." % definition.name)
return data
def _try_read_ply_constant_list_ascii(f, definition: _PlyElementType):
"""
If definition is an element which is a single list, attempt to read the
corresponding data assuming every value has the same length.
If the data is ragged, return None and leave f undisturbed.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
Returns:
If every element has the same size, 2D numpy array corresponding to the
data. The rows are the different values. Otherwise None.
"""
np_type = _PLY_TYPES[definition.properties[0].data_type].np_type
start_point = f.tell()
try:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", message=".* Empty input file.*", category=UserWarning
)
data = np.loadtxt(
f, dtype=np_type, comments=None, ndmin=2, max_rows=definition.count
)
except ValueError:
f.seek(start_point)
return None
if (data.shape[1] - 1 != data[:, 0]).any():
msg = "A line of %s data did not have the specified length."
raise ValueError(msg % definition.name)
if data.shape[0] != definition.count:
raise ValueError("Not enough data for %s." % definition.name)
return data[:, 1:]
def _parse_heterogenous_property_ascii(datum, line_iter, property: _Property):
"""
Read a general data property from an ascii .ply file.
Args:
datum: list to append the single value to. That value will be a numpy
array if the property is a list property, otherwise an int or
float.
line_iter: iterator to words on the line from which we read.
property: the property object describing the property we are reading.
"""
value = next(line_iter, None)
if value is None:
raise ValueError("Too little data for an element.")
if property.list_size_type is None:
try:
if property.data_type in ["double", "float"]:
datum.append(float(value))
else:
datum.append(int(value))
except ValueError:
raise ValueError("Bad numerical data.")
else:
try:
length = int(value)
except ValueError:
raise ValueError("A list length was not a number.")
list_value = np.zeros(length, dtype=_PLY_TYPES[property.data_type].np_type)
for i in range(length):
inner_value = next(line_iter, None)
if inner_value is None:
raise ValueError("Too little data for an element.")
try:
list_value[i] = float(inner_value)
except ValueError:
raise ValueError("Bad numerical data.")
datum.append(list_value)
def _read_ply_element_ascii(f, definition: _PlyElementType):
"""
Decode all instances of a single element from an ascii .ply file.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
Returns:
In simple cases where every element has the same size, 2D numpy array
corresponding to the data. The rows are the different values.
Otherwise a list of lists of values, where the outer list is
each occurence of the element, and the inner lists have one value per
property.
"""
if definition.is_constant_type_fixed_size():
return _read_ply_fixed_size_element_ascii(f, definition)
if definition.try_constant_list():
data = _try_read_ply_constant_list_ascii(f, definition)
if data is not None:
return data
# We failed to read the element as a lump, must process each line manually.
data = []
for _i in range(definition.count):
line_string = f.readline()
if line_string == "":
raise ValueError("Not enough data for %s." % definition.name)
datum = []
line_iter = iter(line_string.strip().split())
for property in definition.properties:
_parse_heterogenous_property_ascii(datum, line_iter, property)
data.append(datum)
if next(line_iter, None) is not None:
raise ValueError("Too much data for an element.")
return data
def _read_ply_fixed_size_element_binary(
f, definition: _PlyElementType, big_endian: bool
):
"""
Given an element which has no lists and one type, read the
corresponding data.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
big_endian: (bool) whether the document is encoded as big endian.
Returns:
2D numpy array corresponding to the data. The rows are the different
values. There is one column for each property.
"""
ply_type = _PLY_TYPES[definition.properties[0].data_type]
np_type = ply_type.np_type
type_size = ply_type.size
needed_length = definition.count * len(definition.properties)
needed_bytes = needed_length * type_size
bytes_data = f.read(needed_bytes)
if len(bytes_data) != needed_bytes:
raise ValueError("Not enough data for %s." % definition.name)
data = np.frombuffer(bytes_data, dtype=np_type)
if (sys.byteorder == "big") != big_endian:
data = data.byteswap()
return data.reshape(definition.count, len(definition.properties))
def _read_ply_element_struct(f, definition: _PlyElementType, endian_str: str):
"""
Given an element which has no lists, read the corresponding data. Uses the
struct library.
Note: It looks like struct would also support lists where
type=size_type=char, but it is hard to know how much data to read in that
case.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
endian_str: ">" or "<" according to whether the document is big or
little endian.
Returns:
2D numpy array corresponding to the data. The rows are the different
values. There is one column for each property.
"""
format = "".join(
_PLY_TYPES[property.data_type].struct_char for property in definition.properties
)
format = endian_str + format
pattern = struct.Struct(format)
size = pattern.size
needed_bytes = size * definition.count
bytes_data = f.read(needed_bytes)
if len(bytes_data) != needed_bytes:
raise ValueError("Not enough data for %s." % definition.name)
data = [pattern.unpack_from(bytes_data, i * size) for i in range(definition.count)]
return data
def _try_read_ply_constant_list_binary(
f, definition: _PlyElementType, big_endian: bool
):
"""
If definition is an element which is a single list, attempt to read the
corresponding data assuming every value has the same length.
If the data is ragged, return None and leave f undisturbed.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
big_endian: (bool) whether the document is encoded as big endian.
Returns:
If every element has the same size, 2D numpy array corresponding to the
data. The rows are the different values. Otherwise None.
"""
property = definition.properties[0]
endian_str = ">" if big_endian else "<"
length_format = endian_str + _PLY_TYPES[property.list_size_type].struct_char
length_struct = struct.Struct(length_format)
def get_length():
bytes_data = f.read(length_struct.size)
if len(bytes_data) != length_struct.size:
raise ValueError("Not enough data for %s." % definition.name)
[length] = length_struct.unpack(bytes_data)
return length
start_point = f.tell()
length = get_length()
np_type = _PLY_TYPES[definition.properties[0].data_type].np_type
type_size = _PLY_TYPES[definition.properties[0].data_type].size
data_size = type_size * length
output = np.zeros((definition.count, length), dtype=np_type)
for i in range(definition.count):
bytes_data = f.read(data_size)
if len(bytes_data) != data_size:
raise ValueError("Not enough data for %s" % definition.name)
output[i] = np.frombuffer(bytes_data, dtype=np_type)
if i + 1 == definition.count:
break
if length != get_length():
f.seek(start_point)
return None
if (sys.byteorder == "big") != big_endian:
output = output.byteswap()
return output
def _read_ply_element_binary(f, definition: _PlyElementType, big_endian: bool) -> list:
"""
Decode all instances of a single element from a binary .ply file.
Args:
f: file-like object being read.
definition: The element object which describes what we are reading.
big_endian: (bool) whether the document is encoded as big endian.
Returns:
In simple cases where every element has the same size, 2D numpy array
corresponding to the data. The rows are the different values.
Otherwise a list of lists/tuples of values, where the outer list is
each occurence of the element, and the inner lists have one value per
property.
"""
endian_str = ">" if big_endian else "<"
if definition.is_constant_type_fixed_size():
return _read_ply_fixed_size_element_binary(f, definition, big_endian)
if definition.is_fixed_size():
return _read_ply_element_struct(f, definition, endian_str)
if definition.try_constant_list():
data = _try_read_ply_constant_list_binary(f, definition, big_endian)
if data is not None:
return data
# We failed to read the element as a lump, must process each line manually.
property_structs = []
for property in definition.properties:
initial_type = property.list_size_type or property.data_type
property_structs.append(
struct.Struct(endian_str + _PLY_TYPES[initial_type].struct_char)
)
data = []
for _i in range(definition.count):
datum = []
for property, property_struct in zip(definition.properties, property_structs):
size = property_struct.size
initial_data = f.read(size)
if len(initial_data) != size:
raise ValueError("Not enough data for %s" % definition.name)
[initial] = property_struct.unpack(initial_data)
if property.list_size_type is None:
datum.append(initial)
else:
type_size = _PLY_TYPES[property.data_type].size
needed_bytes = type_size * initial
list_data = f.read(needed_bytes)
if len(list_data) != needed_bytes:
raise ValueError("Not enough data for %s" % definition.name)
np_type = _PLY_TYPES[property.data_type].np_type
list_np = np.frombuffer(list_data, dtype=np_type)
if (sys.byteorder == "big") != big_endian:
list_np = list_np.byteswap()
datum.append(list_np)
data.append(datum)
return data
def _load_ply_raw_stream(f) -> Tuple[_PlyHeader, dict]:
"""
Implementation for _load_ply_raw which takes a stream.
Args:
f: A binary or text file-like object.
Returns:
header: A _PlyHeader object describing the metadata in the ply file.
elements: A dictionary of element names to values. If an element is regular, in
the sense of having no lists or being one uniformly-sized list, then the
value will be a 2D numpy array. If not, it is a list of the relevant
property values.
"""
header = _PlyHeader(f)
elements = {}
if header.ascii:
for element in header.elements:
elements[element.name] = _read_ply_element_ascii(f, element)
else:
big = header.big_endian
for element in header.elements:
elements[element.name] = _read_ply_element_binary(f, element, big)
end = f.read().strip()
if len(end) != 0:
raise ValueError("Extra data at end of file: " + str(end[:20]))
return header, elements
def _load_ply_raw(f) -> Tuple[_PlyHeader, dict]:
"""
Load the data from a .ply file.
Args:
f: A binary or text file-like object (with methods read, readline,
tell and seek), a pathlib path or a string containing a file name.
If the ply file is binary, a text stream is not supported.
It is recommended to use a binary stream.
Returns:
header: A _PlyHeader object describing the metadata in the ply file.
elements: A dictionary of element names to values. If an element is
regular, in the sense of having no lists or being one
uniformly-sized list, then the value will be a 2D numpy array.
If not, it is a list of the relevant property values.
"""
new_f = False
if isinstance(f, str):
new_f = True
f = open(f, "rb")
elif isinstance(f, pathlib.Path):
new_f = True
f = f.open("rb")
try:
header, elements = _load_ply_raw_stream(f)
finally:
if new_f:
f.close()
return header, elements
def load_ply(f):
"""
Load the data from a .ply file.
Example .ply file format:
ply
format ascii 1.0 { ascii/binary, format version number }
comment made by Greg Turk { comments keyword specified, like all lines }
comment this file is a cube
element vertex 8 { define "vertex" element, 8 of them in file }
property float x { vertex contains float "x" coordinate }
property float y { y coordinate is also a vertex property }
property float z { z coordinate, too }
element face 6 { there are 6 "face" elements in the file }
property list uchar int vertex_index { "vertex_indices" is a list of ints }
end_header { delimits the end of the header }
0 0 0 { start of vertex list }
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0
4 0 1 2 3 { start of face list }
4 7 6 5 4
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0
Args:
f: A binary or text file-like object (with methods read, readline,
tell and seek), a pathlib path or a string containing a file name.
If the ply file is in the binary ply format rather than the text
ply format, then a text stream is not supported.
It is easiest to use a binary stream in all cases.
Returns:
verts: FloatTensor of shape (V, 3).
faces: LongTensor of vertex indices, shape (F, 3).
"""
header, elements = _load_ply_raw(f)
vertex = elements.get("vertex", None)
if vertex is None:
raise ValueError("The ply file has no vertex element.")
face = elements.get("face", None)
if face is None:
raise ValueError("The ply file has no face element.")
if not isinstance(vertex, np.ndarray) or vertex.ndim != 2 or vertex.shape[1] != 3:
raise ValueError("Invalid vertices in file.")
verts = torch.tensor(vertex, dtype=torch.float32)
face_head = next(head for head in header.elements if head.name == "face")
if len(face_head.properties) != 1 or face_head.properties[0].list_size_type is None:
raise ValueError("Unexpected form of faces data.")
# face_head.properties[0].name is usually "vertex_index" or "vertex_indices"
# but we don't need to enforce this.
if isinstance(face, np.ndarray) and face.ndim == 2:
if face.shape[1] < 3:
raise ValueError("Faces must have at least 3 vertices.")
face_arrays = [face[:, [0, i + 1, i + 2]] for i in range(face.shape[1] - 2)]
faces = torch.tensor(np.vstack(face_arrays), dtype=torch.int64)
else:
face_list = []
for face_item in face:
if face_item.ndim != 1:
raise ValueError("Bad face data.")
if face_item.shape[0] < 3:
raise ValueError("Faces must have at least 3 vertices.")
for i in range(face_item.shape[0] - 2):
face_list.append([face_item[0], face_item[i + 1], face_item[i + 2]])
faces = torch.tensor(face_list, dtype=torch.int64)
return verts, faces
def _save_ply(f, verts, faces, decimal_places: Optional[int]):
"""
Internal implementation for saving a mesh to a .ply file.
Args:
f: File object to which the mesh should be written.
verts: FloatTensor of shape (V, 3) giving vertex coordinates.
faces: LongTensor of shape (F, 3) giving faces.
decimal_places: Number of decimal places for saving.
"""
print("ply\nformat ascii 1.0", file=f)
print(f"element vertex {verts.shape[0]}", file=f)
print("property float x", file=f)
print("property float y", file=f)
print("property float z", file=f)
print(f"element face {faces.shape[0]}", file=f)
print("property list uchar int vertex_index", file=f)
print("end_header", file=f)
if decimal_places is None:
float_str = "%f"
else:
float_str = "%" + ".%df" % decimal_places
np.savetxt(f, verts.detach().numpy(), float_str)
np.savetxt(f, faces.detach().numpy(), "3 %d %d %d")
def save_ply(f, verts, faces, decimal_places: Optional[int] = None):
"""
Save a mesh to a .ply file.
Args:
f: File (or path) to which the mesh should be written.
verts: FloatTensor of shape (V, 3) giving vertex coordinates.
faces: LongTensor of shape (F, 3) giving faces.
decimal_places: Number of decimal places for saving.
"""
new_f = False
if isinstance(f, str):
new_f = True
f = open(f, "w")
elif isinstance(f, pathlib.Path):
new_f = True
f = f.open("w")
try:
_save_ply(f, verts, faces, decimal_places)
finally:
if new_f:
f.close()