mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-05 21:42:50 +08:00
Summary: Added support for barycentric clipping in the C++/CUDA rasterization kernels which can be switched on/off via a rasterization setting. Added tests and a benchmark to compare with the current implementation in PyTorch - for some cases of large image size/faces per pixel the cuda version is 10x faster. Reviewed By: gkioxari Differential Revision: D21705503 fbshipit-source-id: e835c0f927f1e5088ca89020aef5ff27ac3a8769
785 lines
26 KiB
C++
785 lines
26 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <algorithm>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include "vec2.h"
|
|
#include "vec3.h"
|
|
|
|
// Set epsilon for preventing floating point errors and division by 0.
|
|
const auto kEpsilon = 1e-8;
|
|
|
|
// Determines whether a point p is on the right side of a 2D line segment
|
|
// given by the end points v0, v1.
|
|
//
|
|
// Args:
|
|
// p: vec2 Coordinates of a point.
|
|
// v0, v1: vec2 Coordinates of the end points of the edge.
|
|
//
|
|
// Returns:
|
|
// area: The signed area of the parallelogram given by the vectors
|
|
// A = p - v0
|
|
// B = v1 - v0
|
|
//
|
|
// v1 ________
|
|
// /\ /
|
|
// A / \ /
|
|
// / \ /
|
|
// v0 /______\/
|
|
// B p
|
|
//
|
|
// The area can also be interpreted as the cross product A x B.
|
|
// If the sign of the area is positive, the point p is on the
|
|
// right side of the edge. Negative area indicates the point is on
|
|
// the left side of the edge. i.e. for an edge v1 - v0:
|
|
//
|
|
// v1
|
|
// /
|
|
// /
|
|
// - / +
|
|
// /
|
|
// /
|
|
// v0
|
|
//
|
|
template <typename T>
|
|
T EdgeFunctionForward(const vec2<T>& p, const vec2<T>& v0, const vec2<T>& v1) {
|
|
const T edge = (p.x - v0.x) * (v1.y - v0.y) - (p.y - v0.y) * (v1.x - v0.x);
|
|
return edge;
|
|
}
|
|
|
|
// Backward pass for the edge function returning partial dervivatives for each
|
|
// of the input points.
|
|
//
|
|
// Args:
|
|
// p: vec2 Coordinates of a point.
|
|
// v0, v1: vec2 Coordinates of the end points of the edge.
|
|
// grad_edge: Upstream gradient for output from edge function.
|
|
//
|
|
// Returns:
|
|
// tuple of gradients for each of the input points:
|
|
// (vec2<T> d_edge_dp, vec2<T> d_edge_dv0, vec2<T> d_edge_dv1)
|
|
//
|
|
template <typename T>
|
|
inline std::tuple<vec2<T>, vec2<T>, vec2<T>> EdgeFunctionBackward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const T grad_edge) {
|
|
const vec2<T> dedge_dp(v1.y - v0.y, v0.x - v1.x);
|
|
const vec2<T> dedge_dv0(p.y - v1.y, v1.x - p.x);
|
|
const vec2<T> dedge_dv1(v0.y - p.y, p.x - v0.x);
|
|
return std::make_tuple(
|
|
grad_edge * dedge_dp, grad_edge * dedge_dv0, grad_edge * dedge_dv1);
|
|
}
|
|
|
|
// The forward pass for computing the barycentric coordinates of a point
|
|
// relative to a triangle.
|
|
// Ref:
|
|
// https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1, v2: Coordinates of the triangle vertices.
|
|
//
|
|
// Returns
|
|
// bary: (w0, w1, w2) barycentric coordinates in the range [0, 1].
|
|
//
|
|
template <typename T>
|
|
vec3<T> BarycentricCoordinatesForward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const vec2<T>& v2) {
|
|
const T area = EdgeFunctionForward(v2, v0, v1) + kEpsilon;
|
|
const T w0 = EdgeFunctionForward(p, v1, v2) / area;
|
|
const T w1 = EdgeFunctionForward(p, v2, v0) / area;
|
|
const T w2 = EdgeFunctionForward(p, v0, v1) / area;
|
|
return vec3<T>(w0, w1, w2);
|
|
}
|
|
|
|
// The backward pass for computing the barycentric coordinates of a point
|
|
// relative to a triangle.
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1, v2: (x, y) coordinates of the triangle vertices.
|
|
// grad_bary_upstream: vec3<T> Upstream gradient for each of the
|
|
// barycentric coordaintes [grad_w0, grad_w1, grad_w2].
|
|
//
|
|
// Returns
|
|
// tuple of gradients for each of the triangle vertices:
|
|
// (vec2<T> grad_v0, vec2<T> grad_v1, vec2<T> grad_v2)
|
|
//
|
|
template <typename T>
|
|
inline std::tuple<vec2<T>, vec2<T>, vec2<T>, vec2<T>> BarycentricCoordsBackward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const vec2<T>& v2,
|
|
const vec3<T>& grad_bary_upstream) {
|
|
const T area = EdgeFunctionForward(v2, v0, v1) + kEpsilon;
|
|
const T area2 = pow(area, 2.0f);
|
|
const T area_inv = 1.0f / area;
|
|
const T e0 = EdgeFunctionForward(p, v1, v2);
|
|
const T e1 = EdgeFunctionForward(p, v2, v0);
|
|
const T e2 = EdgeFunctionForward(p, v0, v1);
|
|
|
|
const T grad_w0 = grad_bary_upstream.x;
|
|
const T grad_w1 = grad_bary_upstream.y;
|
|
const T grad_w2 = grad_bary_upstream.z;
|
|
|
|
// Calculate component of the gradient from each of w0, w1 and w2.
|
|
// e.g. for w0:
|
|
// dloss/dw0_v = dl/dw0 * dw0/dw0_top * dw0_top/dv
|
|
// + dl/dw0 * dw0/dw0_bot * dw0_bot/dv
|
|
const T dw0_darea = -e0 / (area2);
|
|
const T dw0_e0 = area_inv;
|
|
const T dloss_d_w0area = grad_w0 * dw0_darea;
|
|
const T dloss_e0 = grad_w0 * dw0_e0;
|
|
auto de0_dv = EdgeFunctionBackward(p, v1, v2, dloss_e0);
|
|
auto dw0area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w0area);
|
|
const vec2<T> dw0_p = std::get<0>(de0_dv);
|
|
const vec2<T> dw0_dv0 = std::get<1>(dw0area_dv);
|
|
const vec2<T> dw0_dv1 = std::get<1>(de0_dv) + std::get<2>(dw0area_dv);
|
|
const vec2<T> dw0_dv2 = std::get<2>(de0_dv) + std::get<0>(dw0area_dv);
|
|
|
|
const T dw1_darea = -e1 / (area2);
|
|
const T dw1_e1 = area_inv;
|
|
const T dloss_d_w1area = grad_w1 * dw1_darea;
|
|
const T dloss_e1 = grad_w1 * dw1_e1;
|
|
auto de1_dv = EdgeFunctionBackward(p, v2, v0, dloss_e1);
|
|
auto dw1area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w1area);
|
|
const vec2<T> dw1_p = std::get<0>(de1_dv);
|
|
const vec2<T> dw1_dv0 = std::get<2>(de1_dv) + std::get<1>(dw1area_dv);
|
|
const vec2<T> dw1_dv1 = std::get<2>(dw1area_dv);
|
|
const vec2<T> dw1_dv2 = std::get<1>(de1_dv) + std::get<0>(dw1area_dv);
|
|
|
|
const T dw2_darea = -e2 / (area2);
|
|
const T dw2_e2 = area_inv;
|
|
const T dloss_d_w2area = grad_w2 * dw2_darea;
|
|
const T dloss_e2 = grad_w2 * dw2_e2;
|
|
auto de2_dv = EdgeFunctionBackward(p, v0, v1, dloss_e2);
|
|
auto dw2area_dv = EdgeFunctionBackward(v2, v0, v1, dloss_d_w2area);
|
|
const vec2<T> dw2_p = std::get<0>(de2_dv);
|
|
const vec2<T> dw2_dv0 = std::get<1>(de2_dv) + std::get<1>(dw2area_dv);
|
|
const vec2<T> dw2_dv1 = std::get<2>(de2_dv) + std::get<2>(dw2area_dv);
|
|
const vec2<T> dw2_dv2 = std::get<0>(dw2area_dv);
|
|
|
|
const vec2<T> dbary_p = dw0_p + dw1_p + dw2_p;
|
|
const vec2<T> dbary_dv0 = dw0_dv0 + dw1_dv0 + dw2_dv0;
|
|
const vec2<T> dbary_dv1 = dw0_dv1 + dw1_dv1 + dw2_dv1;
|
|
const vec2<T> dbary_dv2 = dw0_dv2 + dw1_dv2 + dw2_dv2;
|
|
|
|
return std::make_tuple(dbary_p, dbary_dv0, dbary_dv1, dbary_dv2);
|
|
}
|
|
|
|
// Forward pass for applying perspective correction to barycentric coordinates.
|
|
//
|
|
// Args:
|
|
// bary: Screen-space barycentric coordinates for a point
|
|
// z0, z1, z2: Camera-space z-coordinates of the triangle vertices
|
|
//
|
|
// Returns
|
|
// World-space barycentric coordinates
|
|
//
|
|
template <typename T>
|
|
inline vec3<T> BarycentricPerspectiveCorrectionForward(
|
|
const vec3<T>& bary,
|
|
const T z0,
|
|
const T z1,
|
|
const T z2) {
|
|
const T w0_top = bary.x * z1 * z2;
|
|
const T w1_top = bary.y * z0 * z2;
|
|
const T w2_top = bary.z * z0 * z1;
|
|
const T denom = w0_top + w1_top + w2_top;
|
|
const T w0 = w0_top / denom;
|
|
const T w1 = w1_top / denom;
|
|
const T w2 = w2_top / denom;
|
|
return vec3<T>(w0, w1, w2);
|
|
}
|
|
|
|
// Backward pass for applying perspective correction to barycentric coordinates.
|
|
//
|
|
// Args:
|
|
// bary: Screen-space barycentric coordinates for a point
|
|
// z0, z1, z2: Camera-space z-coordinates of the triangle vertices
|
|
// grad_out: Upstream gradient of the loss with respect to the corrected
|
|
// barycentric coordinates.
|
|
//
|
|
// Returns a tuple of:
|
|
// grad_bary: Downstream gradient of the loss with respect to the the
|
|
// uncorrected barycentric coordinates.
|
|
// grad_z0, grad_z1, grad_z2: Downstream gradient of the loss with respect
|
|
// to the z-coordinates of the triangle verts
|
|
template <typename T>
|
|
inline std::tuple<vec3<T>, T, T, T> BarycentricPerspectiveCorrectionBackward(
|
|
const vec3<T>& bary,
|
|
const T z0,
|
|
const T z1,
|
|
const T z2,
|
|
const vec3<T>& grad_out) {
|
|
// Recompute forward pass
|
|
const T w0_top = bary.x * z1 * z2;
|
|
const T w1_top = bary.y * z0 * z2;
|
|
const T w2_top = bary.z * z0 * z1;
|
|
const T denom = w0_top + w1_top + w2_top;
|
|
|
|
// Now do backward pass
|
|
const T grad_denom_top =
|
|
-w0_top * grad_out.x - w1_top * grad_out.y - w2_top * grad_out.z;
|
|
const T grad_denom = grad_denom_top / (denom * denom);
|
|
const T grad_w0_top = grad_denom + grad_out.x / denom;
|
|
const T grad_w1_top = grad_denom + grad_out.y / denom;
|
|
const T grad_w2_top = grad_denom + grad_out.z / denom;
|
|
const T grad_bary_x = grad_w0_top * z1 * z2;
|
|
const T grad_bary_y = grad_w1_top * z0 * z2;
|
|
const T grad_bary_z = grad_w2_top * z0 * z1;
|
|
const vec3<T> grad_bary(grad_bary_x, grad_bary_y, grad_bary_z);
|
|
const T grad_z0 = grad_w1_top * bary.y * z2 + grad_w2_top * bary.z * z1;
|
|
const T grad_z1 = grad_w0_top * bary.x * z2 + grad_w2_top * bary.z * z0;
|
|
const T grad_z2 = grad_w0_top * bary.x * z1 + grad_w1_top * bary.y * z0;
|
|
return std::make_tuple(grad_bary, grad_z0, grad_z1, grad_z2);
|
|
}
|
|
|
|
// Clip negative barycentric coordinates to 0.0 and renormalize so
|
|
// the barycentric coordinates for a point sum to 1. When the blur_radius
|
|
// is greater than 0, a face will still be recorded as overlapping a pixel
|
|
// if the pixel is outisde the face. In this case at least one of the
|
|
// barycentric coordinates for the pixel relative to the face will be negative.
|
|
// Clipping will ensure that the texture and z buffer are interpolated
|
|
// correctly.
|
|
//
|
|
// Args
|
|
// bary: (w0, w1, w2) barycentric coordinates which can contain values < 0.
|
|
//
|
|
// Returns
|
|
// bary: (w0, w1, w2) barycentric coordinates in the range [0, 1] which
|
|
// satisfy the condition: sum(w0, w1, w2) = 1.0.
|
|
//
|
|
template <typename T>
|
|
vec3<T> BarycentricClipForward(const vec3<T> bary) {
|
|
vec3<T> w(0.0f, 0.0f, 0.0f);
|
|
// Only clamp negative values to 0.0.
|
|
// No need to clamp values > 1.0 as they will be renormalized.
|
|
w.x = std::max(bary.x, 0.0f);
|
|
w.y = std::max(bary.y, 0.0f);
|
|
w.z = std::max(bary.z, 0.0f);
|
|
float w_sum = w.x + w.y + w.z;
|
|
w_sum = std::fmaxf(w_sum, 1e-5);
|
|
w.x /= w_sum;
|
|
w.y /= w_sum;
|
|
w.z /= w_sum;
|
|
return w;
|
|
}
|
|
|
|
// Backward pass for barycentric coordinate clipping.
|
|
//
|
|
// Args
|
|
// bary: (w0, w1, w2) barycentric coordinates which can contain values < 0.
|
|
// grad_baryclip_upstream: vec3<T> Upstream gradient for each of the clipped
|
|
// barycentric coordinates [grad_w0, grad_w1, grad_w2].
|
|
//
|
|
// Returns
|
|
// vec3<T> of gradients for the unclipped barycentric coordinates:
|
|
// (grad_w0, grad_w1, grad_w2)
|
|
//
|
|
template <typename T>
|
|
vec3<T> BarycentricClipBackward(
|
|
const vec3<T> bary,
|
|
const vec3<T> grad_baryclip_upstream) {
|
|
// Redo some of the forward pass calculations
|
|
vec3<T> w(0.0f, 0.0f, 0.0f);
|
|
w.x = std::max(bary.x, 0.0f);
|
|
w.y = std::max(bary.y, 0.0f);
|
|
w.z = std::max(bary.z, 0.0f);
|
|
float w_sum = w.x + w.y + w.z;
|
|
|
|
vec3<T> grad_bary(1.0f, 1.0f, 1.0f);
|
|
vec3<T> grad_clip(1.0f, 1.0f, 1.0f);
|
|
vec3<T> grad_sum(1.0f, 1.0f, 1.0f);
|
|
|
|
// Check if the sum was clipped.
|
|
float grad_sum_clip = 1.0f;
|
|
if (w_sum < 1e-5) {
|
|
grad_sum_clip = 0.0f;
|
|
w_sum = 1e-5;
|
|
}
|
|
|
|
// Check if any of the bary coordinates have been clipped.
|
|
// Only negative values are clamped to 0.0.
|
|
if (bary.x < 0.0f) {
|
|
grad_clip.x = 0.0f;
|
|
}
|
|
if (bary.y < 0.0f) {
|
|
grad_clip.y = 0.0f;
|
|
}
|
|
if (bary.z < 0.0f) {
|
|
grad_clip.z = 0.0f;
|
|
}
|
|
|
|
// Gradients of the sum.
|
|
grad_sum.x = -w.x / (pow(w_sum, 2.0f)) * grad_sum_clip;
|
|
grad_sum.y = -w.y / (pow(w_sum, 2.0f)) * grad_sum_clip;
|
|
grad_sum.z = -w.z / (pow(w_sum, 2.0f)) * grad_sum_clip;
|
|
|
|
// Gradients for each of the bary coordinates including the cross terms
|
|
// from the sum.
|
|
grad_bary.x = grad_clip.x *
|
|
(grad_baryclip_upstream.x * (1.0f / w_sum + grad_sum.x) +
|
|
grad_baryclip_upstream.y * (grad_sum.y) +
|
|
grad_baryclip_upstream.z * (grad_sum.z));
|
|
|
|
grad_bary.y = grad_clip.y *
|
|
(grad_baryclip_upstream.y * (1.0f / w_sum + grad_sum.y) +
|
|
grad_baryclip_upstream.x * (grad_sum.x) +
|
|
grad_baryclip_upstream.z * (grad_sum.z));
|
|
|
|
grad_bary.z = grad_clip.z *
|
|
(grad_baryclip_upstream.z * (1.0f / w_sum + grad_sum.z) +
|
|
grad_baryclip_upstream.x * (grad_sum.x) +
|
|
grad_baryclip_upstream.y * (grad_sum.y));
|
|
|
|
return grad_bary;
|
|
}
|
|
|
|
// Calculate minimum distance between a line segment (v1 - v0) and point p.
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1: Coordinates of the end points of the line segment.
|
|
//
|
|
// Returns:
|
|
// squared distance of the point to the line.
|
|
//
|
|
// Consider the line extending the segment - this can be parameterized as:
|
|
// v0 + t (v1 - v0).
|
|
//
|
|
// First find the projection of point p onto the line. It falls where:
|
|
// t = [(p - v0) . (v1 - v0)] / |v1 - v0|^2
|
|
// where . is the dot product.
|
|
//
|
|
// The parameter t is clamped from [0, 1] to handle points outside the
|
|
// segment (v1 - v0).
|
|
//
|
|
// Once the projection of the point on the segment is known, the distance from
|
|
// p to the projection gives the minimum distance to the segment.
|
|
//
|
|
template <typename T>
|
|
T PointLineDistanceForward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1) {
|
|
const vec2<T> v1v0 = v1 - v0;
|
|
const T l2 = dot(v1v0, v1v0);
|
|
if (l2 <= kEpsilon) {
|
|
return dot(p - v1, p - v1);
|
|
}
|
|
|
|
const T t = dot(v1v0, p - v0) / l2;
|
|
const T tt = std::min(std::max(t, 0.00f), 1.00f);
|
|
const vec2<T> p_proj = v0 + tt * v1v0;
|
|
return dot(p - p_proj, p - p_proj);
|
|
}
|
|
|
|
template <typename T>
|
|
T PointLine3DistanceForward(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1) {
|
|
const vec3<T> v1v0 = v1 - v0;
|
|
const T l2 = dot(v1v0, v1v0);
|
|
if (l2 <= kEpsilon) {
|
|
return dot(p - v1, p - v1);
|
|
}
|
|
|
|
const T t = dot(v1v0, p - v0) / l2;
|
|
const T tt = std::min(std::max(t, 0.00f), 1.00f);
|
|
const vec3<T> p_proj = v0 + tt * v1v0;
|
|
return dot(p - p_proj, p - p_proj);
|
|
}
|
|
|
|
// Backward pass for point to line distance in 2D.
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1: Coordinates of the end points of the line segment.
|
|
// grad_dist: Upstream gradient for the distance.
|
|
//
|
|
// Returns:
|
|
// tuple of gradients for each of the input points:
|
|
// (vec2<T> grad_p, vec2<T> grad_v0, vec2<T> grad_v1)
|
|
//
|
|
template <typename T>
|
|
inline std::tuple<vec2<T>, vec2<T>, vec2<T>> PointLineDistanceBackward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const T& grad_dist) {
|
|
// Redo some of the forward pass calculations.
|
|
const vec2<T> v1v0 = v1 - v0;
|
|
const vec2<T> pv0 = p - v0;
|
|
const T t_bot = dot(v1v0, v1v0);
|
|
const T t_top = dot(v1v0, pv0);
|
|
const T t = t_top / t_bot;
|
|
const T tt = std::min(std::max(t, 0.00f), 1.00f);
|
|
const vec2<T> p_proj = (1.0f - tt) * v0 + tt * v1;
|
|
|
|
const vec2<T> grad_v0 = grad_dist * (1.0f - tt) * 2.0f * (p_proj - p);
|
|
const vec2<T> grad_v1 = grad_dist * tt * 2.0f * (p_proj - p);
|
|
const vec2<T> grad_p = -1.0f * grad_dist * 2.0f * (p_proj - p);
|
|
|
|
return std::make_tuple(grad_p, grad_v0, grad_v1);
|
|
}
|
|
|
|
template <typename T>
|
|
std::tuple<vec3<T>, vec3<T>, vec3<T>> PointLine3DistanceBackward(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1,
|
|
const T& grad_dist) {
|
|
const vec3<T> v1v0 = v1 - v0;
|
|
const vec3<T> pv0 = p - v0;
|
|
const T t_bot = dot(v1v0, v1v0);
|
|
const T t_top = dot(v1v0, pv0);
|
|
|
|
vec3<T> grad_p{0.0f, 0.0f, 0.0f};
|
|
vec3<T> grad_v0{0.0f, 0.0f, 0.0f};
|
|
vec3<T> grad_v1{0.0f, 0.0f, 0.0f};
|
|
|
|
const T tt = t_top / t_bot;
|
|
|
|
if (t_bot < kEpsilon) {
|
|
// if t_bot small, then v0 == v1,
|
|
// and dist = 0.5 * dot(pv0, pv0) + 0.5 * dot(pv1, pv1)
|
|
grad_p = grad_dist * 2.0f * pv0;
|
|
grad_v0 = -0.5f * grad_p;
|
|
grad_v1 = grad_v0;
|
|
} else if (tt < 0.0f) {
|
|
grad_p = grad_dist * 2.0f * pv0;
|
|
grad_v0 = -1.0f * grad_p;
|
|
// no gradients wrt v1
|
|
} else if (tt > 1.0f) {
|
|
grad_p = grad_dist * 2.0f * (p - v1);
|
|
grad_v1 = -1.0f * grad_p;
|
|
// no gradients wrt v0
|
|
} else {
|
|
const vec3<T> p_proj = v0 + tt * v1v0;
|
|
const vec3<T> diff = p - p_proj;
|
|
const vec3<T> grad_base = grad_dist * 2.0f * diff;
|
|
grad_p = grad_base - dot(grad_base, v1v0) * v1v0 / t_bot;
|
|
const vec3<T> dtt_v0 = (-1.0f * v1v0 - pv0 + 2.0f * tt * v1v0) / t_bot;
|
|
grad_v0 = (-1.0f + tt) * grad_base - dot(grad_base, v1v0) * dtt_v0;
|
|
const vec3<T> dtt_v1 = (pv0 - 2.0f * tt * v1v0) / t_bot;
|
|
grad_v1 = -dot(grad_base, v1v0) * dtt_v1 - tt * grad_base;
|
|
}
|
|
|
|
return std::make_tuple(grad_p, grad_v0, grad_v1);
|
|
}
|
|
|
|
// The forward pass for calculating the shortest distance between a point
|
|
// and a triangle.
|
|
// Ref: https://www.randygaul.net/2014/07/23/distance-point-to-line-segment/
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1, v2: Coordinates of the three triangle vertices.
|
|
//
|
|
// Returns:
|
|
// shortest squared distance from a point to a triangle.
|
|
//
|
|
//
|
|
template <typename T>
|
|
T PointTriangleDistanceForward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const vec2<T>& v2) {
|
|
// Compute distance of point to 3 edges of the triangle and return the
|
|
// minimum value.
|
|
const T e01_dist = PointLineDistanceForward(p, v0, v1);
|
|
const T e02_dist = PointLineDistanceForward(p, v0, v2);
|
|
const T e12_dist = PointLineDistanceForward(p, v1, v2);
|
|
const T edge_dist = std::min(std::min(e01_dist, e02_dist), e12_dist);
|
|
|
|
return edge_dist;
|
|
}
|
|
|
|
// Backward pass for point triangle distance.
|
|
//
|
|
// Args:
|
|
// p: Coordinates of a point.
|
|
// v0, v1, v2: Coordinates of the three triangle vertices.
|
|
// grad_dist: Upstream gradient for the distance.
|
|
//
|
|
// Returns:
|
|
// tuple of gradients for each of the triangle vertices:
|
|
// (vec2<T> grad_v0, vec2<T> grad_v1, vec2<T> grad_v2)
|
|
//
|
|
template <typename T>
|
|
inline std::tuple<vec2<T>, vec2<T>, vec2<T>, vec2<T>>
|
|
PointTriangleDistanceBackward(
|
|
const vec2<T>& p,
|
|
const vec2<T>& v0,
|
|
const vec2<T>& v1,
|
|
const vec2<T>& v2,
|
|
const T& grad_dist) {
|
|
// Compute distance to all 3 edges of the triangle.
|
|
const T e01_dist = PointLineDistanceForward(p, v0, v1);
|
|
const T e02_dist = PointLineDistanceForward(p, v0, v2);
|
|
const T e12_dist = PointLineDistanceForward(p, v1, v2);
|
|
|
|
// Initialize output tensors.
|
|
vec2<T> grad_v0(0.0f, 0.0f);
|
|
vec2<T> grad_v1(0.0f, 0.0f);
|
|
vec2<T> grad_v2(0.0f, 0.0f);
|
|
vec2<T> grad_p(0.0f, 0.0f);
|
|
|
|
// Find which edge is the closest and return PointLineDistanceBackward for
|
|
// that edge.
|
|
if (e01_dist <= e02_dist && e01_dist <= e12_dist) {
|
|
// Closest edge is v1 - v0.
|
|
auto grad_e01 = PointLineDistanceBackward(p, v0, v1, grad_dist);
|
|
grad_p = std::get<0>(grad_e01);
|
|
grad_v0 = std::get<1>(grad_e01);
|
|
grad_v1 = std::get<2>(grad_e01);
|
|
} else if (e02_dist <= e01_dist && e02_dist <= e12_dist) {
|
|
// Closest edge is v2 - v0.
|
|
auto grad_e02 = PointLineDistanceBackward(p, v0, v2, grad_dist);
|
|
grad_p = std::get<0>(grad_e02);
|
|
grad_v0 = std::get<1>(grad_e02);
|
|
grad_v2 = std::get<2>(grad_e02);
|
|
} else if (e12_dist <= e01_dist && e12_dist <= e02_dist) {
|
|
// Closest edge is v2 - v1.
|
|
auto grad_e12 = PointLineDistanceBackward(p, v1, v2, grad_dist);
|
|
grad_p = std::get<0>(grad_e12);
|
|
grad_v1 = std::get<1>(grad_e12);
|
|
grad_v2 = std::get<2>(grad_e12);
|
|
}
|
|
|
|
return std::make_tuple(grad_p, grad_v0, grad_v1, grad_v2);
|
|
}
|
|
|
|
// Computes the squared distance of a point p relative to a triangle (v0, v1,
|
|
// v2). If the point's projection p0 on the plane spanned by (v0, v1, v2) is
|
|
// inside the triangle with vertices (v0, v1, v2), then the returned value is
|
|
// the squared distance of p to its projection p0. Otherwise, the returned value
|
|
// is the smallest squared distance of p from the line segments (v0, v1), (v0,
|
|
// v2) and (v1, v2).
|
|
//
|
|
// Args:
|
|
// p: vec3 coordinates of a point
|
|
// v0, v1, v2: vec3 coordinates of the triangle vertices
|
|
//
|
|
// Returns:
|
|
// dist: Float of the squared distance
|
|
//
|
|
|
|
const float vEpsilon = 1e-8;
|
|
|
|
template <typename T>
|
|
vec3<T> BarycentricCoords3Forward(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1,
|
|
const vec3<T>& v2) {
|
|
vec3<T> p0 = v1 - v0;
|
|
vec3<T> p1 = v2 - v0;
|
|
vec3<T> p2 = p - v0;
|
|
|
|
const T d00 = dot(p0, p0);
|
|
const T d01 = dot(p0, p1);
|
|
const T d11 = dot(p1, p1);
|
|
const T d20 = dot(p2, p0);
|
|
const T d21 = dot(p2, p1);
|
|
|
|
const T denom = d00 * d11 - d01 * d01 + kEpsilon;
|
|
const T w1 = (d11 * d20 - d01 * d21) / denom;
|
|
const T w2 = (d00 * d21 - d01 * d20) / denom;
|
|
const T w0 = 1.0f - w1 - w2;
|
|
|
|
return vec3<T>(w0, w1, w2);
|
|
}
|
|
|
|
// Checks whether the point p is inside the triangle (v0, v1, v2).
|
|
// A point is inside the triangle, if all barycentric coordinates
|
|
// wrt the triangle are >= 0 & <= 1.
|
|
//
|
|
// NOTE that this function assumes that p lives on the space spanned
|
|
// by (v0, v1, v2).
|
|
// TODO(gkioxari) explicitly check whether p is coplanar with (v0, v1, v2)
|
|
// and throw an error if check fails
|
|
//
|
|
// Args:
|
|
// p: vec3 coordinates of a point
|
|
// v0, v1, v2: vec3 coordinates of the triangle vertices
|
|
//
|
|
// Returns:
|
|
// inside: bool indicating wether p is inside triangle
|
|
//
|
|
template <typename T>
|
|
static bool IsInsideTriangle(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1,
|
|
const vec3<T>& v2) {
|
|
vec3<T> bary = BarycentricCoords3Forward(p, v0, v1, v2);
|
|
bool x_in = 0.0f <= bary.x && bary.x <= 1.0f;
|
|
bool y_in = 0.0f <= bary.y && bary.y <= 1.0f;
|
|
bool z_in = 0.0f <= bary.z && bary.z <= 1.0f;
|
|
bool inside = x_in && y_in && z_in;
|
|
return inside;
|
|
}
|
|
|
|
template <typename T>
|
|
T PointTriangle3DistanceForward(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1,
|
|
const vec3<T>& v2) {
|
|
vec3<T> normal = cross(v2 - v0, v1 - v0);
|
|
const T norm_normal = norm(normal);
|
|
normal = normal / (norm_normal + vEpsilon);
|
|
|
|
// p0 is the projection of p on the plane spanned by (v0, v1, v2)
|
|
// i.e. p0 = p + t * normal, s.t. (p0 - v0) is orthogonal to normal
|
|
const T t = dot(v0 - p, normal);
|
|
const vec3<T> p0 = p + t * normal;
|
|
|
|
bool is_inside = IsInsideTriangle(p0, v0, v1, v2);
|
|
T dist = 0.0f;
|
|
|
|
if ((is_inside) && (norm_normal > kEpsilon)) {
|
|
// if projection p0 is inside triangle spanned by (v0, v1, v2)
|
|
// then distance is equal to norm(p0 - p)^2
|
|
dist = t * t;
|
|
} else {
|
|
const float e01 = PointLine3DistanceForward(p, v0, v1);
|
|
const float e02 = PointLine3DistanceForward(p, v0, v2);
|
|
const float e12 = PointLine3DistanceForward(p, v1, v2);
|
|
|
|
dist = (e01 > e02) ? e02 : e01;
|
|
dist = (dist > e12) ? e12 : dist;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
template <typename T>
|
|
std::tuple<vec3<T>, vec3<T>>
|
|
cross_backward(const vec3<T>& a, const vec3<T>& b, const vec3<T>& grad_cross) {
|
|
const float grad_ax = -grad_cross.y * b.z + grad_cross.z * b.y;
|
|
const float grad_ay = grad_cross.x * b.z - grad_cross.z * b.x;
|
|
const float grad_az = -grad_cross.x * b.y + grad_cross.y * b.x;
|
|
const vec3<T> grad_a = vec3<T>(grad_ax, grad_ay, grad_az);
|
|
|
|
const float grad_bx = grad_cross.y * a.z - grad_cross.z * a.y;
|
|
const float grad_by = -grad_cross.x * a.z + grad_cross.z * a.x;
|
|
const float grad_bz = grad_cross.x * a.y - grad_cross.y * a.x;
|
|
const vec3<T> grad_b = vec3<T>(grad_bx, grad_by, grad_bz);
|
|
|
|
return std::make_tuple(grad_a, grad_b);
|
|
}
|
|
|
|
template <typename T>
|
|
vec3<T> normalize_backward(const vec3<T>& a, const vec3<T>& grad_normz) {
|
|
const float a_norm = norm(a) + vEpsilon;
|
|
const vec3<T> out = a / a_norm;
|
|
|
|
const float grad_ax = grad_normz.x * (1.0f - out.x * out.x) / a_norm +
|
|
grad_normz.y * (-out.x * out.y) / a_norm +
|
|
grad_normz.z * (-out.x * out.z) / a_norm;
|
|
const float grad_ay = grad_normz.x * (-out.x * out.y) / a_norm +
|
|
grad_normz.y * (1.0f - out.y * out.y) / a_norm +
|
|
grad_normz.z * (-out.y * out.z) / a_norm;
|
|
const float grad_az = grad_normz.x * (-out.x * out.z) / a_norm +
|
|
grad_normz.y * (-out.y * out.z) / a_norm +
|
|
grad_normz.z * (1.0f - out.z * out.z) / a_norm;
|
|
return vec3<T>(grad_ax, grad_ay, grad_az);
|
|
}
|
|
|
|
// The backward pass for computing the squared distance of a point
|
|
// to the triangle (v0, v1, v2).
|
|
//
|
|
// Args:
|
|
// p: xyz coordinates of a point
|
|
// v0, v1, v2: xyz coordinates of the triangle vertices
|
|
// grad_dist: Float of the gradient wrt dist
|
|
//
|
|
// Returns:
|
|
// tuple of gradients for the point and triangle:
|
|
// (float3 grad_p, float3 grad_v0, float3 grad_v1, float3 grad_v2)
|
|
//
|
|
|
|
template <typename T>
|
|
static std::tuple<vec3<T>, vec3<T>, vec3<T>, vec3<T>>
|
|
PointTriangle3DistanceBackward(
|
|
const vec3<T>& p,
|
|
const vec3<T>& v0,
|
|
const vec3<T>& v1,
|
|
const vec3<T>& v2,
|
|
const T& grad_dist) {
|
|
const vec3<T> v2v0 = v2 - v0;
|
|
const vec3<T> v1v0 = v1 - v0;
|
|
const vec3<T> v0p = v0 - p;
|
|
vec3<T> raw_normal = cross(v2v0, v1v0);
|
|
const T norm_normal = norm(raw_normal);
|
|
vec3<T> normal = raw_normal / (norm_normal + vEpsilon);
|
|
|
|
// p0 is the projection of p on the plane spanned by (v0, v1, v2)
|
|
// i.e. p0 = p + t * normal, s.t. (p0 - v0) is orthogonal to normal
|
|
const T t = dot(v0 - p, normal);
|
|
const vec3<T> p0 = p + t * normal;
|
|
const vec3<T> diff = t * normal;
|
|
|
|
bool is_inside = IsInsideTriangle(p0, v0, v1, v2);
|
|
|
|
vec3<T> grad_p(0.0f, 0.0f, 0.0f);
|
|
vec3<T> grad_v0(0.0f, 0.0f, 0.0f);
|
|
vec3<T> grad_v1(0.0f, 0.0f, 0.0f);
|
|
vec3<T> grad_v2(0.0f, 0.0f, 0.0f);
|
|
|
|
if ((is_inside) && (norm_normal > kEpsilon)) {
|
|
// derivative of dist wrt p
|
|
grad_p = -2.0f * grad_dist * t * normal;
|
|
// derivative of dist wrt normal
|
|
const vec3<T> grad_normal = 2.0f * grad_dist * t * (v0p + diff);
|
|
// derivative of dist wrt raw_normal
|
|
const vec3<T> grad_raw_normal = normalize_backward(raw_normal, grad_normal);
|
|
// derivative of dist wrt v2v0 and v1v0
|
|
const auto grad_cross = cross_backward(v2v0, v1v0, grad_raw_normal);
|
|
const vec3<T> grad_cross_v2v0 = std::get<0>(grad_cross);
|
|
const vec3<T> grad_cross_v1v0 = std::get<1>(grad_cross);
|
|
grad_v0 =
|
|
grad_dist * 2.0f * t * normal - (grad_cross_v2v0 + grad_cross_v1v0);
|
|
grad_v1 = grad_cross_v1v0;
|
|
grad_v2 = grad_cross_v2v0;
|
|
} else {
|
|
const T e01 = PointLine3DistanceForward(p, v0, v1);
|
|
const T e02 = PointLine3DistanceForward(p, v0, v2);
|
|
const T e12 = PointLine3DistanceForward(p, v1, v2);
|
|
|
|
if ((e01 <= e02) && (e01 <= e12)) {
|
|
// e01 is smallest
|
|
const auto grads = PointLine3DistanceBackward(p, v0, v1, grad_dist);
|
|
grad_p = std::get<0>(grads);
|
|
grad_v0 = std::get<1>(grads);
|
|
grad_v1 = std::get<2>(grads);
|
|
} else if ((e02 <= e01) && (e02 <= e12)) {
|
|
// e02 is smallest
|
|
const auto grads = PointLine3DistanceBackward(p, v0, v2, grad_dist);
|
|
grad_p = std::get<0>(grads);
|
|
grad_v0 = std::get<1>(grads);
|
|
grad_v2 = std::get<2>(grads);
|
|
} else if ((e12 <= e01) && (e12 <= e02)) {
|
|
// e12 is smallest
|
|
const auto grads = PointLine3DistanceBackward(p, v1, v2, grad_dist);
|
|
grad_p = std::get<0>(grads);
|
|
grad_v1 = std::get<1>(grads);
|
|
grad_v2 = std::get<2>(grads);
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(grad_p, grad_v0, grad_v1, grad_v2);
|
|
}
|