pytorch3d/docs/examples/pulsar_cam_unified.py
Jeremy Reizenstein d220ee2f66 pulsar build and CI changes
Summary:
Changes to CI and some minor fixes now that pulsar is part of pytorch3d. Most significantly, add CUB to CI builds.

Make CUB_HOME override the CUB already in cudatoolkit (important for cuda11.0 which uses cub 1.9.9 which pulsar doesn't work well with.
Make imageio available for testing.
Lint fixes.
Fix some test verbosity.
Avoid use of atomicAdd_block on older GPUs.

Reviewed By: nikhilaravi, classner

Differential Revision: D24773716

fbshipit-source-id: 2428356bb2e62735f2bc0c15cbe4cff35b1b24b8
2020-11-10 09:38:05 -08:00

229 lines
7.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates camera parameter optimization with the pulsar
PyTorch3D interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam-pt3d.gif
"""
import logging
from os import path
import cv2
import imageio
import numpy as np
import torch
# Import `look_at_view_transform` as needed in the suggestion later in the
# example.
from pytorch3d.renderer.cameras import PerspectiveCameras # , look_at_view_transform
from pytorch3d.renderer.points import (
PointsRasterizationSettings,
PointsRasterizer,
PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import axis_angle_to_matrix
from torch import nn, optim
LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
class SceneModel(nn.Module):
"""
A simple scene model to demonstrate use of pulsar in PyTorch modules.
The scene model is parameterized with sphere locations (vert_pos),
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
The forward method of the model renders this scene description. Any
of these parameters could instead be passed as inputs to the forward
method and come from a different model.
"""
def __init__(self):
super(SceneModel, self).__init__()
self.gamma = 0.1
# Points.
torch.manual_seed(1)
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.rand(N_POINTS, 3, dtype=torch.float32),
requires_grad=False,
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.rand(N_POINTS, dtype=torch.float32),
requires_grad=False,
),
)
self.register_parameter(
"cam_pos",
nn.Parameter(
torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32),
requires_grad=True,
),
)
self.register_parameter(
"cam_rot",
# We're using the 6D rot. representation for better gradients.
nn.Parameter(
axis_angle_to_matrix(
torch.tensor(
[
[0.02, 0.02, 0.01],
],
dtype=torch.float32,
)
)[0],
requires_grad=True,
),
)
self.register_parameter(
"focal_length",
nn.Parameter(
torch.tensor(
[
4.8 * 2.0 / 2.0,
],
dtype=torch.float32,
),
requires_grad=True,
),
)
self.cameras = PerspectiveCameras(
# The focal length must be double the size for PyTorch3D because of the NDC
# coordinates spanning a range of two - and they must be normalized by the
# sensor width (see the pulsar example). This means we need here
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
#
# R, T and f are provided here, but will be provided again
# at every call to the forward method. The reason are problems
# with PyTorch which makes device placement for gradients problematic
# for tensors which are themselves on a 'gradient path' but not
# leafs in the calculation tree. This will be addressed by an architectural
# change in PyTorch3D in the future. Until then, this workaround is
# recommended.
focal_length=self.focal_length,
R=self.cam_rot[None, ...],
T=self.cam_pos[None, ...],
image_size=((WIDTH, HEIGHT),),
device=DEVICE,
)
raster_settings = PointsRasterizationSettings(
image_size=(WIDTH, HEIGHT),
radius=self.vert_rad,
)
rasterizer = PointsRasterizer(
cameras=self.cameras, raster_settings=raster_settings
)
self.renderer = PulsarPointsRenderer(rasterizer=rasterizer)
def forward(self):
# The Pointclouds object creates copies of it's arguments - that's why
# we have to create a new object in every forward step.
pcl = Pointclouds(
points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
)
return self.renderer(
pcl,
gamma=(self.gamma,),
zfar=(45.0,),
znear=(1.0,),
radius_world=True,
bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
# As mentioned above: workaround for device placement of gradients for
# camera parameters.
focal_length=self.focal_length,
R=self.cam_rot[None, ...],
T=self.cam_pos[None, ...],
)[0]
def cli():
"""
Camera optimization example using pulsar.
Writes to `cam.gif`.
"""
LOGGER.info("Loading reference...")
# Load reference.
ref = (
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
)[:, ::-1, :].copy()
).to(torch.float32)
/ 255.0
).to(DEVICE)
# Set up model.
model = SceneModel().to(DEVICE)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.cam_pos], "lr": 1e-4},
{"params": [model.cam_rot], "lr": 5e-6},
# Using a higher lr for the focal length here, because
# the sensor width can not be optimized directly.
{"params": [model.focal_length], "lr": 1e-3},
]
)
LOGGER.info("Writing video to `%s`.", path.abspath("cam-pt3d.gif"))
writer = imageio.get_writer("cam-pt3d.gif", format="gif", fps=25)
# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[:, :, ::-1])
writer.append_data(result_im)
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
:, :, ::-1
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
LOGGER.info("loss %d: %f", i, loss.item())
loss.backward()
optimizer.step()
writer.close()
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()