pytorch3d/docs/examples/pulsar_basic.py
Jeremy Reizenstein d220ee2f66 pulsar build and CI changes
Summary:
Changes to CI and some minor fixes now that pulsar is part of pytorch3d. Most significantly, add CUB to CI builds.

Make CUB_HOME override the CUB already in cudatoolkit (important for cuda11.0 which uses cub 1.9.9 which pulsar doesn't work well with.
Make imageio available for testing.
Lint fixes.
Fix some test verbosity.
Avoid use of atomicAdd_block on older GPUs.

Reviewed By: nikhilaravi, classner

Differential Revision: D24773716

fbshipit-source-id: 2428356bb2e62735f2bc0c15cbe4cff35b1b24b8
2020-11-10 09:38:05 -08:00

72 lines
2.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates the most trivial, direct interface of the pulsar
sphere renderer. It renders and saves an image with 10 random spheres.
Output: basic.png.
"""
import logging
import math
from os import path
import imageio
import torch
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER = logging.getLogger(__name__)
def cli():
"""
Basic example for the pulsar sphere renderer.
Writes to `basic.png`.
"""
LOGGER.info("Rendering on GPU...")
torch.manual_seed(1)
n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
# The PyTorch3D system is right handed; in pulsar you can choose the handedness.
# For easy reproducibility we use a right handed coordinate system here.
renderer = Renderer(width, height, n_points, right_handed_system=True).to(device)
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
cam_params = torch.tensor(
[
0.0,
0.0,
0.0, # Position 0, 0, 0 (x, y, z).
0.0,
math.pi, # Because of the right handed system, the camera must look 'back'.
0.0, # Rotation 0, 0, 0 (in axis-angle format).
5.0, # Focal length in world size.
2.0, # Sensor size in world size.
],
dtype=torch.float32,
device=device,
)
# Render.
image = renderer(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1, # Renderer blending parameter gamma, in [1., 1e-5].
45.0, # Maximum depth.
)
LOGGER.info("Writing image to `%s`.", path.abspath("basic.png"))
imageio.imsave("basic.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy())
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()