mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: 1. We may need to store arrays of unknown shape in the database. It implements and tests serialisation. 2. Previously, when an inexisting metadata file was passed to SqlIndexDataset, it would try to open it and create an empty file, then crash. We now open the file in a read-only mode, so the error message is more intuitive. Note that the implementation is SQLite specific. Reviewed By: bottler Differential Revision: D46047857 fbshipit-source-id: 3064ae4f8122b4fc24ad3d6ab696572ebe8d0c26
742 lines
29 KiB
Python
742 lines
29 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
# All rights reserved.
|
||
#
|
||
# This source code is licensed under the BSD-style license found in the
|
||
# LICENSE file in the root directory of this source tree.
|
||
|
||
import hashlib
|
||
import json
|
||
import logging
|
||
import os
|
||
from dataclasses import dataclass
|
||
from typing import (
|
||
Any,
|
||
ClassVar,
|
||
Dict,
|
||
Iterable,
|
||
Iterator,
|
||
List,
|
||
Optional,
|
||
Sequence,
|
||
Tuple,
|
||
Type,
|
||
Union,
|
||
)
|
||
|
||
import numpy as np
|
||
import pandas as pd
|
||
import sqlalchemy as sa
|
||
import torch
|
||
from pytorch3d.implicitron.dataset.dataset_base import DatasetBase
|
||
|
||
from pytorch3d.implicitron.dataset.frame_data import ( # noqa
|
||
FrameData,
|
||
FrameDataBuilder,
|
||
FrameDataBuilderBase,
|
||
)
|
||
from pytorch3d.implicitron.tools.config import (
|
||
registry,
|
||
ReplaceableBase,
|
||
run_auto_creation,
|
||
)
|
||
from sqlalchemy.orm import Session
|
||
|
||
from .orm_types import SqlFrameAnnotation, SqlSequenceAnnotation
|
||
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
_SET_LISTS_TABLE: str = "set_lists"
|
||
|
||
|
||
@registry.register
|
||
class SqlIndexDataset(DatasetBase, ReplaceableBase): # pyre-ignore
|
||
"""
|
||
A dataset with annotations stored as SQLite tables. This is an index-based dataset.
|
||
The length is returned after all sequence and frame filters are applied (see param
|
||
definitions below). Indices can either be ordinal in [0, len), or pairs of
|
||
(sequence_name, frame_number); with the performance of `dataset[i]` and
|
||
`dataset[sequence_name, frame_number]` being same. A faster way to get metadata only
|
||
(without blobs) is `dataset.meta[idx]` indexing; it requires box_crop==False.
|
||
With ordinal indexing, the sequences are NOT guaranteed to span contiguous index
|
||
ranges, and frame numbers are NOT guaranteed to be increasing within a sequence.
|
||
Sequence-aware batch samplers have to use `sequence_[frames|indices]_in_order`
|
||
iterators, which are efficient.
|
||
|
||
This functionality requires SQLAlchemy 2.0 or later.
|
||
|
||
Metadata-related args:
|
||
sqlite_metadata_file: A SQLite file containing frame and sequence annotation
|
||
tables (mapping to SqlFrameAnnotation and SqlSequenceAnnotation,
|
||
respectively).
|
||
dataset_root: A root directory to look for images, masks, etc. It can be
|
||
alternatively set in `frame_data_builder` args, but this takes precedence.
|
||
subset_lists_file: A JSON/sqlite file containing the lists of frames
|
||
corresponding to different subsets (e.g. train/val/test) of the dataset;
|
||
format: {subset: [(sequence_name, frame_id, file_path)]}. All entries
|
||
must be present in frame_annotation metadata table.
|
||
path_manager: a facade for non-POSIX filesystems.
|
||
subsets: Restrict frames/sequences only to the given list of subsets
|
||
as defined in subset_lists_file (see above). Applied before all other
|
||
filters.
|
||
remove_empty_masks: Removes the frames with no active foreground pixels
|
||
in the segmentation mask (needs frame_annotation.mask.mass to be set;
|
||
null values are retained).
|
||
pick_frames_sql_clause: SQL WHERE clause to constrain frame annotations
|
||
NOTE: This is a potential security risk! The string is passed to the SQL
|
||
engine verbatim. Don’t expose it to end users of your application!
|
||
pick_categories: Restrict the dataset to the given list of categories.
|
||
pick_sequences: A Sequence of sequence names to restrict the dataset to.
|
||
exclude_sequences: A Sequence of the names of the sequences to exclude.
|
||
limit_sequences_to: Limit the dataset to the first `limit_sequences_to`
|
||
sequences (after other sequence filters have been applied but before
|
||
frame-based filters).
|
||
limit_to: Limit the dataset to the first #limit_to frames (after other
|
||
filters have been applied, except n_frames_per_sequence).
|
||
n_frames_per_sequence: If > 0, randomly samples `n_frames_per_sequence`
|
||
frames in each sequences uniformly without replacement if it has
|
||
more frames than that; applied after other frame-level filters.
|
||
seed: The seed of the random generator sampling `n_frames_per_sequence`
|
||
random frames per sequence.
|
||
"""
|
||
|
||
frame_annotations_type: ClassVar[Type[SqlFrameAnnotation]] = SqlFrameAnnotation
|
||
|
||
sqlite_metadata_file: str = ""
|
||
dataset_root: Optional[str] = None
|
||
subset_lists_file: str = ""
|
||
eval_batches_file: Optional[str] = None
|
||
path_manager: Any = None
|
||
subsets: Optional[List[str]] = None
|
||
remove_empty_masks: bool = True
|
||
pick_frames_sql_clause: Optional[str] = None
|
||
pick_categories: Tuple[str, ...] = ()
|
||
|
||
pick_sequences: Tuple[str, ...] = ()
|
||
exclude_sequences: Tuple[str, ...] = ()
|
||
limit_sequences_to: int = 0
|
||
limit_to: int = 0
|
||
n_frames_per_sequence: int = -1
|
||
seed: int = 0
|
||
remove_empty_masks_poll_whole_table_threshold: int = 300_000
|
||
# we set it manually in the constructor
|
||
# _index: pd.DataFrame = field(init=False)
|
||
|
||
frame_data_builder: FrameDataBuilderBase
|
||
frame_data_builder_class_type: str = "FrameDataBuilder"
|
||
|
||
def __post_init__(self) -> None:
|
||
if sa.__version__ < "2.0":
|
||
raise ImportError("This class requires SQL Alchemy 2.0 or later")
|
||
|
||
if not self.sqlite_metadata_file:
|
||
raise ValueError("sqlite_metadata_file must be set")
|
||
|
||
if self.dataset_root:
|
||
frame_builder_type = self.frame_data_builder_class_type
|
||
getattr(self, f"frame_data_builder_{frame_builder_type}_args")[
|
||
"dataset_root"
|
||
] = self.dataset_root
|
||
|
||
run_auto_creation(self)
|
||
self.frame_data_builder.path_manager = self.path_manager
|
||
|
||
# pyre-ignore # NOTE: sqlite-specific args (read-only mode).
|
||
self._sql_engine = sa.create_engine(
|
||
f"sqlite:///file:{self.sqlite_metadata_file}?mode=ro&uri=true"
|
||
)
|
||
|
||
sequences = self._get_filtered_sequences_if_any()
|
||
|
||
if self.subsets:
|
||
index = self._build_index_from_subset_lists(sequences)
|
||
else:
|
||
# TODO: if self.subset_lists_file and not self.subsets, it might be faster to
|
||
# still use the concatenated lists, assuming they cover the whole dataset
|
||
index = self._build_index_from_db(sequences)
|
||
|
||
if self.n_frames_per_sequence >= 0:
|
||
index = self._stratified_sample_index(index)
|
||
|
||
if len(index) == 0:
|
||
raise ValueError(f"There are no frames in the subsets: {self.subsets}!")
|
||
|
||
self._index = index.set_index(["sequence_name", "frame_number"]) # pyre-ignore
|
||
|
||
self.eval_batches = None # pyre-ignore
|
||
if self.eval_batches_file:
|
||
self.eval_batches = self._load_filter_eval_batches()
|
||
|
||
logger.info(str(self))
|
||
|
||
def __len__(self) -> int:
|
||
# pyre-ignore[16]
|
||
return len(self._index)
|
||
|
||
def __getitem__(self, frame_idx: Union[int, Tuple[str, int]]) -> FrameData:
|
||
"""
|
||
Fetches FrameData by either iloc in the index or by (sequence, frame_no) pair
|
||
"""
|
||
return self._get_item(frame_idx, True)
|
||
|
||
@property
|
||
def meta(self):
|
||
"""
|
||
Allows accessing metadata only without loading blobs using `dataset.meta[idx]`.
|
||
Requires box_crop==False, since in that case, cameras cannot be adjusted
|
||
without loading masks.
|
||
|
||
Returns:
|
||
FrameData objects with blob fields like `image_rgb` set to None.
|
||
|
||
Raises:
|
||
ValueError if dataset.box_crop is set.
|
||
"""
|
||
return SqlIndexDataset._MetadataAccessor(self)
|
||
|
||
@dataclass
|
||
class _MetadataAccessor:
|
||
dataset: "SqlIndexDataset"
|
||
|
||
def __getitem__(self, frame_idx: Union[int, Tuple[str, int]]) -> FrameData:
|
||
return self.dataset._get_item(frame_idx, False)
|
||
|
||
def _get_item(
|
||
self, frame_idx: Union[int, Tuple[str, int]], load_blobs: bool = True
|
||
) -> FrameData:
|
||
if isinstance(frame_idx, int):
|
||
if frame_idx >= len(self._index):
|
||
raise IndexError(f"index {frame_idx} out of range {len(self._index)}")
|
||
|
||
seq, frame = self._index.index[frame_idx]
|
||
else:
|
||
seq, frame, *rest = frame_idx
|
||
if isinstance(frame, torch.LongTensor):
|
||
frame = frame.item()
|
||
|
||
if (seq, frame) not in self._index.index:
|
||
raise IndexError(
|
||
f"Sequence-frame index {frame_idx} not found; was it filtered out?"
|
||
)
|
||
|
||
if rest and rest[0] != self._index.loc[(seq, frame), "_image_path"]:
|
||
raise IndexError(f"Non-matching image path in {frame_idx}.")
|
||
|
||
stmt = sa.select(self.frame_annotations_type).where(
|
||
self.frame_annotations_type.sequence_name == seq,
|
||
self.frame_annotations_type.frame_number
|
||
== int(frame), # cast from np.int64
|
||
)
|
||
seq_stmt = sa.select(SqlSequenceAnnotation).where(
|
||
SqlSequenceAnnotation.sequence_name == seq
|
||
)
|
||
with Session(self._sql_engine) as session:
|
||
entry = session.scalars(stmt).one()
|
||
seq_metadata = session.scalars(seq_stmt).one()
|
||
|
||
assert entry.image.path == self._index.loc[(seq, frame), "_image_path"]
|
||
|
||
frame_data = self.frame_data_builder.build(
|
||
entry, seq_metadata, load_blobs=load_blobs
|
||
)
|
||
|
||
# The rest of the fields are optional
|
||
frame_data.frame_type = self._get_frame_type(entry)
|
||
return frame_data
|
||
|
||
def __str__(self) -> str:
|
||
# pyre-ignore[16]
|
||
return f"SqlIndexDataset #frames={len(self._index)}"
|
||
|
||
def sequence_names(self) -> Iterable[str]:
|
||
"""Returns an iterator over sequence names in the dataset."""
|
||
return self._index.index.unique("sequence_name")
|
||
|
||
# override
|
||
def category_to_sequence_names(self) -> Dict[str, List[str]]:
|
||
stmt = sa.select(
|
||
SqlSequenceAnnotation.category, SqlSequenceAnnotation.sequence_name
|
||
).where( # we limit results to sequences that have frames after all filters
|
||
SqlSequenceAnnotation.sequence_name.in_(self.sequence_names())
|
||
)
|
||
with self._sql_engine.connect() as connection:
|
||
cat_to_seqs = pd.read_sql(stmt, connection)
|
||
|
||
return cat_to_seqs.groupby("category")["sequence_name"].apply(list).to_dict()
|
||
|
||
# override
|
||
def get_frame_numbers_and_timestamps(
|
||
self, idxs: Sequence[int], subset_filter: Optional[Sequence[str]] = None
|
||
) -> List[Tuple[int, float]]:
|
||
"""
|
||
Implements the DatasetBase method.
|
||
|
||
NOTE: Avoid this function as there are more efficient alternatives such as
|
||
querying `dataset[idx]` directly or getting all sequence frames with
|
||
`sequence_[frames|indices]_in_order`.
|
||
|
||
Return the index and timestamp in their videos of the frames whose
|
||
indices are given in `idxs`. They need to belong to the same sequence!
|
||
If timestamps are absent, they are replaced with zeros.
|
||
This is used for letting SceneBatchSampler identify consecutive
|
||
frames.
|
||
|
||
Args:
|
||
idxs: a sequence int frame index in the dataset (it can be a slice)
|
||
subset_filter: must remain None
|
||
|
||
Returns:
|
||
list of tuples of
|
||
- frame index in video
|
||
- timestamp of frame in video, coalesced with 0s
|
||
|
||
Raises:
|
||
ValueError if idxs belong to more than one sequence.
|
||
"""
|
||
|
||
if subset_filter is not None:
|
||
raise NotImplementedError(
|
||
"Subset filters are not supported in SQL Dataset. "
|
||
"We encourage creating a dataset per subset."
|
||
)
|
||
|
||
index_slice, _ = self._get_frame_no_coalesced_ts_by_row_indices(idxs)
|
||
# alternatively, we can use `.values.tolist()`, which may be faster
|
||
# but returns a list of lists
|
||
return list(index_slice.itertuples())
|
||
|
||
# override
|
||
def sequence_frames_in_order(
|
||
self, seq_name: str, subset_filter: Optional[Sequence[str]] = None
|
||
) -> Iterator[Tuple[float, int, int]]:
|
||
"""
|
||
Overrides the default DatasetBase implementation (we don’t use `_seq_to_idx`).
|
||
Returns an iterator over the frame indices in a given sequence.
|
||
We attempt to first sort by timestamp (if they are available),
|
||
then by frame number.
|
||
|
||
Args:
|
||
seq_name: the name of the sequence.
|
||
subset_filter: subset names to filter to
|
||
|
||
Returns:
|
||
an iterator over triplets `(timestamp, frame_no, dataset_idx)`,
|
||
where `frame_no` is the index within the sequence, and
|
||
`dataset_idx` is the index within the dataset.
|
||
`None` timestamps are replaced with 0s.
|
||
"""
|
||
# TODO: implement sort_timestamp_first? (which would matter if the orders
|
||
# of frame numbers and timestamps are different)
|
||
rows = self._index.index.get_loc(seq_name)
|
||
if isinstance(rows, slice):
|
||
assert rows.stop is not None, "Unexpected result from pandas"
|
||
rows = range(rows.start or 0, rows.stop, rows.step or 1)
|
||
else:
|
||
rows = np.where(rows)[0]
|
||
|
||
index_slice, idx = self._get_frame_no_coalesced_ts_by_row_indices(
|
||
rows, seq_name, subset_filter
|
||
)
|
||
index_slice["idx"] = idx
|
||
|
||
yield from index_slice.itertuples(index=False)
|
||
|
||
# override
|
||
def get_eval_batches(self) -> Optional[List[Any]]:
|
||
"""
|
||
This class does not support eval batches with ordinal indices. You can pass
|
||
eval_batches as a batch_sampler to a data_loader since the dataset supports
|
||
`dataset[seq_name, frame_no]` indexing.
|
||
"""
|
||
return self.eval_batches
|
||
|
||
# override
|
||
def join(self, other_datasets: Iterable[DatasetBase]) -> None:
|
||
raise ValueError("Not supported! Preprocess the data by merging them instead.")
|
||
|
||
# override
|
||
@property
|
||
def frame_data_type(self) -> Type[FrameData]:
|
||
return self.frame_data_builder.frame_data_type
|
||
|
||
def is_filtered(self) -> bool:
|
||
"""
|
||
Returns `True` in case the dataset has been filtered and thus some frame
|
||
annotations stored on the disk might be missing in the dataset object.
|
||
Does not account for subsets.
|
||
|
||
Returns:
|
||
is_filtered: `True` if the dataset has been filtered, else `False`.
|
||
"""
|
||
return (
|
||
self.remove_empty_masks
|
||
or self.limit_to > 0
|
||
or self.limit_sequences_to > 0
|
||
or len(self.pick_sequences) > 0
|
||
or len(self.exclude_sequences) > 0
|
||
or len(self.pick_categories) > 0
|
||
or self.n_frames_per_sequence > 0
|
||
)
|
||
|
||
def _get_filtered_sequences_if_any(self) -> Optional[pd.Series]:
|
||
# maximum possible query: WHERE category IN 'self.pick_categories'
|
||
# AND sequence_name IN 'self.pick_sequences'
|
||
# AND sequence_name NOT IN 'self.exclude_sequences'
|
||
# LIMIT 'self.limit_sequence_to'
|
||
|
||
stmt = sa.select(SqlSequenceAnnotation.sequence_name)
|
||
|
||
where_conditions = [
|
||
*self._get_category_filters(),
|
||
*self._get_pick_filters(),
|
||
*self._get_exclude_filters(),
|
||
]
|
||
if where_conditions:
|
||
stmt = stmt.where(*where_conditions)
|
||
|
||
if self.limit_sequences_to > 0:
|
||
logger.info(
|
||
f"Limiting dataset to first {self.limit_sequences_to} sequences"
|
||
)
|
||
# NOTE: ROWID is SQLite-specific
|
||
stmt = stmt.order_by(sa.text("ROWID")).limit(self.limit_sequences_to)
|
||
|
||
if not where_conditions and self.limit_sequences_to <= 0:
|
||
# we will not need to filter by sequences
|
||
return None
|
||
|
||
with self._sql_engine.connect() as connection:
|
||
sequences = pd.read_sql_query(stmt, connection)["sequence_name"]
|
||
logger.info("... retained %d sequences" % len(sequences))
|
||
|
||
return sequences
|
||
|
||
def _get_category_filters(self) -> List[sa.ColumnElement]:
|
||
if not self.pick_categories:
|
||
return []
|
||
|
||
logger.info(f"Limiting dataset to categories: {self.pick_categories}")
|
||
return [SqlSequenceAnnotation.category.in_(self.pick_categories)]
|
||
|
||
def _get_pick_filters(self) -> List[sa.ColumnElement]:
|
||
if not self.pick_sequences:
|
||
return []
|
||
|
||
logger.info(f"Limiting dataset to sequences: {self.pick_sequences}")
|
||
return [SqlSequenceAnnotation.sequence_name.in_(self.pick_sequences)]
|
||
|
||
def _get_exclude_filters(self) -> List[sa.ColumnOperators]:
|
||
if not self.exclude_sequences:
|
||
return []
|
||
|
||
logger.info(f"Removing sequences from the dataset: {self.exclude_sequences}")
|
||
return [SqlSequenceAnnotation.sequence_name.notin_(self.exclude_sequences)]
|
||
|
||
def _load_subsets_from_json(self, subset_lists_path: str) -> pd.DataFrame:
|
||
assert self.subsets is not None
|
||
with open(subset_lists_path, "r") as f:
|
||
subset_to_seq_frame = json.load(f)
|
||
|
||
seq_frame_list = sum(
|
||
(
|
||
[(*row, subset) for row in subset_to_seq_frame[subset]]
|
||
for subset in self.subsets
|
||
),
|
||
[],
|
||
)
|
||
index = pd.DataFrame(
|
||
seq_frame_list,
|
||
columns=["sequence_name", "frame_number", "_image_path", "subset"],
|
||
)
|
||
return index
|
||
|
||
def _load_subsets_from_sql(self, subset_lists_path: str) -> pd.DataFrame:
|
||
subsets = self.subsets
|
||
assert subsets is not None
|
||
# we need a new engine since we store the subsets in a separate DB
|
||
engine = sa.create_engine(f"sqlite:///{subset_lists_path}")
|
||
table = sa.Table(_SET_LISTS_TABLE, sa.MetaData(), autoload_with=engine)
|
||
stmt = sa.select(table).where(table.c.subset.in_(subsets))
|
||
with engine.connect() as connection:
|
||
index = pd.read_sql(stmt, connection)
|
||
|
||
return index
|
||
|
||
def _build_index_from_subset_lists(
|
||
self, sequences: Optional[pd.Series]
|
||
) -> pd.DataFrame:
|
||
if not self.subset_lists_file:
|
||
raise ValueError("Requested subsets but subset_lists_file not given")
|
||
|
||
logger.info(f"Loading subset lists from {self.subset_lists_file}.")
|
||
|
||
subset_lists_path = self._local_path(self.subset_lists_file)
|
||
if subset_lists_path.lower().endswith(".json"):
|
||
index = self._load_subsets_from_json(subset_lists_path)
|
||
else:
|
||
index = self._load_subsets_from_sql(subset_lists_path)
|
||
index = index.set_index(["sequence_name", "frame_number"])
|
||
logger.info(f" -> loaded {len(index)} samples of {self.subsets}.")
|
||
|
||
if sequences is not None:
|
||
logger.info("Applying filtered sequences.")
|
||
sequence_values = index.index.get_level_values("sequence_name")
|
||
index = index.loc[sequence_values.isin(sequences)]
|
||
logger.info(f" -> retained {len(index)} samples.")
|
||
|
||
pick_frames_criteria = []
|
||
if self.remove_empty_masks:
|
||
logger.info("Culling samples with empty masks.")
|
||
|
||
if len(index) > self.remove_empty_masks_poll_whole_table_threshold:
|
||
# APPROACH 1: find empty masks and drop indices.
|
||
# dev load: 17s / 15 s (3.1M / 500K)
|
||
stmt = sa.select(
|
||
self.frame_annotations_type.sequence_name,
|
||
self.frame_annotations_type.frame_number,
|
||
).where(self.frame_annotations_type._mask_mass == 0)
|
||
with Session(self._sql_engine) as session:
|
||
to_remove = session.execute(stmt).all()
|
||
|
||
# Pandas uses np.int64 for integer types, so we have to case
|
||
# we might want to read it to pandas DataFrame directly to avoid the loop
|
||
to_remove = [(seq, np.int64(fr)) for seq, fr in to_remove]
|
||
index.drop(to_remove, errors="ignore", inplace=True)
|
||
else:
|
||
# APPROACH 3: load index into a temp table and join with annotations
|
||
# dev load: 94 s / 23 s (3.1M / 500K)
|
||
pick_frames_criteria.append(
|
||
sa.or_(
|
||
self.frame_annotations_type._mask_mass.is_(None),
|
||
self.frame_annotations_type._mask_mass != 0,
|
||
)
|
||
)
|
||
|
||
if self.pick_frames_sql_clause:
|
||
logger.info("Applying the custom SQL clause.")
|
||
pick_frames_criteria.append(sa.text(self.pick_frames_sql_clause))
|
||
|
||
if pick_frames_criteria:
|
||
index = self._pick_frames_by_criteria(index, pick_frames_criteria)
|
||
|
||
logger.info(f" -> retained {len(index)} samples.")
|
||
|
||
if self.limit_to > 0:
|
||
logger.info(f"Limiting dataset to first {self.limit_to} frames")
|
||
index = index.sort_index().iloc[: self.limit_to]
|
||
|
||
return index.reset_index()
|
||
|
||
def _pick_frames_by_criteria(self, index: pd.DataFrame, criteria) -> pd.DataFrame:
|
||
IndexTable = self._get_temp_index_table_instance()
|
||
with self._sql_engine.connect() as connection:
|
||
IndexTable.create(connection)
|
||
# we don’t let pandas’s `to_sql` create the table automatically as
|
||
# the table would be permanent, so we create it and append with pandas
|
||
n_rows = index.to_sql(IndexTable.name, connection, if_exists="append")
|
||
assert n_rows == len(index)
|
||
sa_type = self.frame_annotations_type
|
||
stmt = (
|
||
sa.select(IndexTable)
|
||
.select_from(
|
||
IndexTable.join(
|
||
self.frame_annotations_type,
|
||
sa.and_(
|
||
sa_type.sequence_name == IndexTable.c.sequence_name,
|
||
sa_type.frame_number == IndexTable.c.frame_number,
|
||
),
|
||
)
|
||
)
|
||
.where(*criteria)
|
||
)
|
||
return pd.read_sql_query(stmt, connection).set_index(
|
||
["sequence_name", "frame_number"]
|
||
)
|
||
|
||
def _build_index_from_db(self, sequences: Optional[pd.Series]):
|
||
logger.info("Loading sequcence-frame index from the database")
|
||
stmt = sa.select(
|
||
self.frame_annotations_type.sequence_name,
|
||
self.frame_annotations_type.frame_number,
|
||
self.frame_annotations_type._image_path,
|
||
sa.null().label("subset"),
|
||
)
|
||
where_conditions = []
|
||
if sequences is not None:
|
||
logger.info(" applying filtered sequences")
|
||
where_conditions.append(
|
||
self.frame_annotations_type.sequence_name.in_(sequences.tolist())
|
||
)
|
||
|
||
if self.remove_empty_masks:
|
||
logger.info(" excluding samples with empty masks")
|
||
where_conditions.append(
|
||
sa.or_(
|
||
self.frame_annotations_type._mask_mass.is_(None),
|
||
self.frame_annotations_type._mask_mass != 0,
|
||
)
|
||
)
|
||
|
||
if self.pick_frames_sql_clause:
|
||
logger.info(" applying custom SQL clause")
|
||
where_conditions.append(sa.text(self.pick_frames_sql_clause))
|
||
|
||
if where_conditions:
|
||
stmt = stmt.where(*where_conditions)
|
||
|
||
if self.limit_to > 0:
|
||
logger.info(f"Limiting dataset to first {self.limit_to} frames")
|
||
stmt = stmt.order_by(
|
||
self.frame_annotations_type.sequence_name,
|
||
self.frame_annotations_type.frame_number,
|
||
).limit(self.limit_to)
|
||
|
||
with self._sql_engine.connect() as connection:
|
||
index = pd.read_sql_query(stmt, connection)
|
||
|
||
logger.info(f" -> loaded {len(index)} samples.")
|
||
return index
|
||
|
||
def _sort_index_(self, index):
|
||
logger.info("Sorting the index by sequence and frame number.")
|
||
index.sort_values(["sequence_name", "frame_number"], inplace=True)
|
||
logger.info(" -> Done.")
|
||
|
||
def _load_filter_eval_batches(self):
|
||
assert self.eval_batches_file
|
||
logger.info(f"Loading eval batches from {self.eval_batches_file}")
|
||
|
||
if not os.path.isfile(self.eval_batches_file):
|
||
# The batch indices file does not exist.
|
||
# Most probably the user has not specified the root folder.
|
||
raise ValueError(
|
||
f"Looking for dataset json file in {self.eval_batches_file}. "
|
||
+ "Please specify a correct dataset_root folder."
|
||
)
|
||
|
||
with open(self.eval_batches_file, "r") as f:
|
||
eval_batches = json.load(f)
|
||
|
||
# limit the dataset to sequences to allow multiple evaluations in one file
|
||
pick_sequences = set(self.pick_sequences)
|
||
if self.pick_categories:
|
||
cat_to_seq = self.category_to_sequence_names()
|
||
pick_sequences.update(
|
||
seq for cat in self.pick_categories for seq in cat_to_seq[cat]
|
||
)
|
||
|
||
if pick_sequences:
|
||
old_len = len(eval_batches)
|
||
eval_batches = [b for b in eval_batches if b[0][0] in pick_sequences]
|
||
logger.warn(
|
||
f"Picked eval batches by sequence/cat: {old_len} -> {len(eval_batches)}"
|
||
)
|
||
|
||
if self.exclude_sequences:
|
||
old_len = len(eval_batches)
|
||
exclude_sequences = set(self.exclude_sequences)
|
||
eval_batches = [b for b in eval_batches if b[0][0] not in exclude_sequences]
|
||
logger.warn(
|
||
f"Excluded eval batches by sequence: {old_len} -> {len(eval_batches)}"
|
||
)
|
||
|
||
return eval_batches
|
||
|
||
def _stratified_sample_index(self, index):
|
||
# NOTE this stratified sampling can be done more efficiently in
|
||
# the no-subset case above if it is added to the SQL query.
|
||
# We keep this generic implementation since no-subset case is uncommon
|
||
index = index.groupby("sequence_name", group_keys=False).apply(
|
||
lambda seq_frames: seq_frames.sample(
|
||
min(len(seq_frames), self.n_frames_per_sequence),
|
||
random_state=(
|
||
_seq_name_to_seed(seq_frames.iloc[0]["sequence_name"]) + self.seed
|
||
),
|
||
)
|
||
)
|
||
logger.info(f" -> retained {len(index)} samples aster stratified sampling.")
|
||
return index
|
||
|
||
def _get_frame_type(self, entry: SqlFrameAnnotation) -> Optional[str]:
|
||
return self._index.loc[(entry.sequence_name, entry.frame_number), "subset"]
|
||
|
||
def _get_frame_no_coalesced_ts_by_row_indices(
|
||
self,
|
||
idxs: Sequence[int],
|
||
seq_name: Optional[str] = None,
|
||
subset_filter: Union[Sequence[str], str, None] = None,
|
||
) -> Tuple[pd.DataFrame, Sequence[int]]:
|
||
"""
|
||
Loads timestamps for given index rows belonging to the same sequence.
|
||
If seq_name is known, it speeds up the computation.
|
||
Raises ValueError if `idxs` do not all belong to a single sequences .
|
||
"""
|
||
index_slice = self._index.iloc[idxs]
|
||
if subset_filter is not None:
|
||
if isinstance(subset_filter, str):
|
||
subset_filter = [subset_filter]
|
||
indicator = index_slice["subset"].isin(subset_filter)
|
||
index_slice = index_slice.loc[indicator]
|
||
idxs = [i for i, isin in zip(idxs, indicator) if isin]
|
||
|
||
frames = index_slice.index.get_level_values("frame_number").tolist()
|
||
if seq_name is None:
|
||
seq_name_list = index_slice.index.get_level_values("sequence_name").tolist()
|
||
seq_name_set = set(seq_name_list)
|
||
if len(seq_name_set) > 1:
|
||
raise ValueError("Given indices belong to more than one sequence.")
|
||
elif len(seq_name_set) == 1:
|
||
seq_name = seq_name_list[0]
|
||
|
||
coalesced_ts = sa.sql.functions.coalesce(
|
||
self.frame_annotations_type.frame_timestamp, 0
|
||
)
|
||
stmt = sa.select(
|
||
coalesced_ts.label("frame_timestamp"),
|
||
self.frame_annotations_type.frame_number,
|
||
).where(
|
||
self.frame_annotations_type.sequence_name == seq_name,
|
||
self.frame_annotations_type.frame_number.in_(frames),
|
||
)
|
||
|
||
with self._sql_engine.connect() as connection:
|
||
frame_no_ts = pd.read_sql_query(stmt, connection)
|
||
|
||
if len(frame_no_ts) != len(index_slice):
|
||
raise ValueError(
|
||
"Not all indices are found in the database; "
|
||
"do they belong to more than one sequence?"
|
||
)
|
||
|
||
return frame_no_ts, idxs
|
||
|
||
def _local_path(self, path: str) -> str:
|
||
if self.path_manager is None:
|
||
return path
|
||
return self.path_manager.get_local_path(path)
|
||
|
||
def _get_temp_index_table_instance(self, table_name: str = "__index"):
|
||
CachedTable = self.frame_annotations_type.metadata.tables.get(table_name)
|
||
if CachedTable is not None: # table definition is not idempotent
|
||
return CachedTable
|
||
|
||
return sa.Table(
|
||
table_name,
|
||
self.frame_annotations_type.metadata,
|
||
sa.Column("sequence_name", sa.String, primary_key=True),
|
||
sa.Column("frame_number", sa.Integer, primary_key=True),
|
||
sa.Column("_image_path", sa.String),
|
||
sa.Column("subset", sa.String),
|
||
prefixes=["TEMP"], # NOTE SQLite specific!
|
||
)
|
||
|
||
|
||
def _seq_name_to_seed(seq_name) -> int:
|
||
"""Generates numbers in [0, 2 ** 28)"""
|
||
return int(hashlib.sha1(seq_name.encode("utf-8")).hexdigest()[:7], 16)
|
||
|
||
|
||
def _safe_as_tensor(data, dtype):
|
||
return torch.tensor(data, dtype=dtype) if data is not None else None
|