mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
85 lines
2.9 KiB
Python
85 lines
2.9 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from common_testing import TestCaseMixin
|
|
from pytorch3d.renderer.utils import TensorProperties
|
|
|
|
|
|
# Example class for testing
|
|
class TensorPropertiesTestClass(TensorProperties):
|
|
def __init__(self, x=None, y=None, device="cpu"):
|
|
super().__init__(device=device, x=x, y=y)
|
|
|
|
def clone(self):
|
|
other = TensorPropertiesTestClass()
|
|
return super().clone(other)
|
|
|
|
|
|
class TestTensorProperties(TestCaseMixin, unittest.TestCase):
|
|
def test_init(self):
|
|
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
|
|
# Check kwargs set as attributes + converted to tensors
|
|
self.assertTrue(torch.is_tensor(example.x))
|
|
self.assertTrue(torch.is_tensor(example.y))
|
|
# Check broadcasting
|
|
self.assertTrue(example.x.shape == (2,))
|
|
self.assertTrue(example.y.shape == (2,))
|
|
self.assertTrue(len(example) == 2)
|
|
|
|
def test_to(self):
|
|
# Check to method
|
|
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
|
|
device = torch.device("cuda:0")
|
|
new_example = example.to(device=device)
|
|
self.assertTrue(new_example.device == device)
|
|
|
|
def test_clone(self):
|
|
# Check clone method
|
|
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
|
|
new_example = example.clone()
|
|
self.assertSeparate(example.x, new_example.x)
|
|
self.assertSeparate(example.y, new_example.y)
|
|
|
|
def test_get_set(self):
|
|
# Test getitem returns an accessor which can be used to modify
|
|
# attributes at a particular index
|
|
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0, 300.0))
|
|
|
|
# update y1
|
|
example[1].y = 5.0
|
|
self.assertTrue(example.y[1] == 5.0)
|
|
|
|
# Get item and get value
|
|
ex0 = example[0]
|
|
self.assertTrue(ex0.y == 100.0)
|
|
|
|
def test_empty_input(self):
|
|
example = TensorPropertiesTestClass(x=(), y=())
|
|
self.assertTrue(len(example) == 0)
|
|
self.assertTrue(example.isempty())
|
|
|
|
def test_gather_props(self):
|
|
N = 4
|
|
x = torch.randn((N, 3, 4))
|
|
y = torch.randn((N, 5))
|
|
test_class = TensorPropertiesTestClass(x=x, y=y)
|
|
|
|
S = 15
|
|
idx = torch.tensor(np.random.choice(N, S))
|
|
test_class_gathered = test_class.gather_props(idx)
|
|
|
|
self.assertTrue(test_class_gathered.x.shape == (S, 3, 4))
|
|
self.assertTrue(test_class_gathered.y.shape == (S, 5))
|
|
|
|
for i in range(N):
|
|
inds = idx == i
|
|
if inds.sum() > 0:
|
|
# Check the gathered points in the output have the same value from
|
|
# the input.
|
|
self.assertClose(test_class_gathered.x[inds].mean(dim=0), x[i, ...])
|
|
self.assertClose(test_class_gathered.y[inds].mean(dim=0), y[i, ...])
|