mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Efficient PnP algorithm to fit 2D to 3D correspondences under perspective assumption. Benchmarked both variants of nullspace and pick one; SVD takes 7 times longer in the 100K points case. Reviewed By: davnov134, gkioxari Differential Revision: D20095754 fbshipit-source-id: 2b4519729630e6373820880272f674829eaed073
26 lines
673 B
Python
26 lines
673 B
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
import itertools
|
|
|
|
from fvcore.common.benchmark import benchmark
|
|
from test_perspective_n_points import TestPerspectiveNPoints
|
|
|
|
|
|
def bm_perspective_n_points() -> None:
|
|
case_grid = {
|
|
"batch_size": [1, 10, 100],
|
|
"num_pts": [100, 100000],
|
|
"skip_q": [False, True],
|
|
}
|
|
|
|
test_cases = itertools.product(*case_grid.values())
|
|
kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]
|
|
|
|
test = TestPerspectiveNPoints()
|
|
benchmark(
|
|
test.case_with_gaussian_points,
|
|
"PerspectiveNPoints",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|