mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from pytorch3d.implicitron.models.base import GenericModel
|
|
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
|
|
from pytorch3d.implicitron.tools.config import expand_args_fields
|
|
from pytorch3d.renderer.cameras import PerspectiveCameras, look_at_view_transform
|
|
|
|
|
|
class TestGenericModel(unittest.TestCase):
|
|
def test_gm(self):
|
|
# Simple test of a forward pass of the default GenericModel.
|
|
device = torch.device("cuda:1")
|
|
expand_args_fields(GenericModel)
|
|
model = GenericModel()
|
|
model.to(device)
|
|
|
|
n_train_cameras = 2
|
|
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
|
|
cameras = PerspectiveCameras(R=R, T=T, device=device)
|
|
|
|
# TODO: make these default to None?
|
|
defaulted_args = {
|
|
"fg_probability": None,
|
|
"depth_map": None,
|
|
"mask_crop": None,
|
|
"sequence_name": None,
|
|
}
|
|
|
|
with self.assertWarnsRegex(UserWarning, "No main objective found"):
|
|
model(
|
|
camera=cameras,
|
|
evaluation_mode=EvaluationMode.TRAINING,
|
|
**defaulted_args,
|
|
image_rgb=None,
|
|
)
|
|
target_image_rgb = torch.rand(
|
|
(n_train_cameras, 3, model.render_image_height, model.render_image_width),
|
|
device=device,
|
|
)
|
|
train_preds = model(
|
|
camera=cameras,
|
|
evaluation_mode=EvaluationMode.TRAINING,
|
|
image_rgb=target_image_rgb,
|
|
**defaulted_args,
|
|
)
|
|
self.assertGreater(train_preds["objective"].item(), 0)
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
# TODO: perhaps this warning should be skipped in eval mode?
|
|
with self.assertWarnsRegex(UserWarning, "No main objective found"):
|
|
eval_preds = model(
|
|
camera=cameras[0],
|
|
**defaulted_args,
|
|
image_rgb=None,
|
|
)
|
|
self.assertEqual(
|
|
eval_preds["images_render"].shape,
|
|
(1, 3, model.render_image_height, model.render_image_width),
|
|
)
|