mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Try to document implicitron. Most of this is autogenerated. Reviewed By: shapovalov Differential Revision: D40623742 fbshipit-source-id: 453508277903b7d987b1703656ba1ee09bc2c570
121 lines
3.6 KiB
Python
Executable File
121 lines
3.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""
|
|
This script makes the stubs for implicitron in docs/modules.
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
ROOT_DIR = Path(__file__).resolve().parent.parent
|
|
DEST_DIR = Path(__file__).resolve().parent / "modules/implicitron"
|
|
|
|
|
|
def paths_to_modules(paths):
|
|
"""
|
|
Given an iterable of paths, return equivalent list of modules.
|
|
"""
|
|
return [str(i.relative_to(ROOT_DIR))[:-3].replace("/", ".") for i in paths]
|
|
|
|
|
|
def create_one_file(title, description, sources, dest_file):
|
|
with open(dest_file, "w") as f:
|
|
print(title, file=f)
|
|
print("=" * len(title), file=f)
|
|
print(file=f)
|
|
print(description, file=f)
|
|
for source in sources:
|
|
if source.find("._") != -1:
|
|
# ignore internal modules including __init__.py
|
|
continue
|
|
print(f"\n.. automodule:: {source}", file=f)
|
|
print(" :members:", file=f)
|
|
print(" :undoc-members:", file=f)
|
|
print(" :show-inheritance:", file=f)
|
|
|
|
|
|
def iterate_directory(directory_path, dest):
|
|
"""
|
|
Create a file for each module in the given path
|
|
"""
|
|
toc = []
|
|
if not dest.exists():
|
|
dest.mkdir()
|
|
for file in directory_path.glob("*.py"):
|
|
if file.stem.startswith("_"):
|
|
continue
|
|
module = paths_to_modules([file])
|
|
create_one_file(module[0], file.stem, module, dest / f"{file.stem}.rst")
|
|
toc.append(file.stem)
|
|
|
|
for subdir in directory_path.iterdir():
|
|
if not subdir.is_dir():
|
|
continue
|
|
if subdir.name == "fb":
|
|
continue
|
|
iterate_directory(subdir, dest / (subdir.name))
|
|
toc.append(f"{subdir.name}/index")
|
|
|
|
with open(dest / "index.rst", "w") as f:
|
|
title = paths_to_modules([directory_path.with_suffix(".XX")])[0]
|
|
print(title, file=f)
|
|
print("=" * len(title), file=f)
|
|
print("\n.. toctree::\n", file=f)
|
|
for item in toc:
|
|
print(f" {item}", file=f)
|
|
|
|
|
|
iterate_directory(ROOT_DIR / "pytorch3d/implicitron/models", DEST_DIR / "models")
|
|
|
|
unwanted_tools = ["configurable", "depth_cleanup", "utils"]
|
|
tools_sources = sorted(ROOT_DIR.glob("pytorch3d/implicitron/tools/*.py"))
|
|
tools_modules = [
|
|
str(i.relative_to(ROOT_DIR))[:-3].replace("/", ".")
|
|
for i in tools_sources
|
|
if i.stem not in unwanted_tools
|
|
]
|
|
create_one_file(
|
|
"pytorch3d.implicitron.tools",
|
|
"Tools for implicitron",
|
|
tools_modules,
|
|
DEST_DIR / "tools.rst",
|
|
)
|
|
|
|
dataset_files = sorted(ROOT_DIR.glob("pytorch3d/implicitron/dataset/*.py"))
|
|
basic_dataset = [
|
|
"dataset_base",
|
|
"dataset_map_provider",
|
|
"data_loader_map_provider",
|
|
"data_source",
|
|
"scene_batch_sampler",
|
|
]
|
|
basic_dataset_modules = [f"pytorch3d.implicitron.dataset.{i}" for i in basic_dataset]
|
|
create_one_file(
|
|
"pytorch3d.implicitron.dataset",
|
|
"Basics of data for implicitron",
|
|
basic_dataset_modules,
|
|
DEST_DIR / "data_basics.rst",
|
|
)
|
|
|
|
specific_dataset_files = [
|
|
i for i in dataset_files if i.stem.find("_dataset_map_provider") != -1
|
|
]
|
|
create_one_file(
|
|
"pytorch3d.impliciton.dataset",
|
|
"specific datasets",
|
|
paths_to_modules(specific_dataset_files),
|
|
DEST_DIR / "datasets.rst",
|
|
)
|
|
|
|
evaluation_files = sorted(ROOT_DIR.glob("pytorch3d/implicitron/evaluation/*.py"))
|
|
create_one_file(
|
|
"pytorch3d.impliciton.evaluation",
|
|
"evaluation",
|
|
paths_to_modules(evaluation_files),
|
|
DEST_DIR / "evaluation.rst",
|
|
)
|