mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Move the flyaround rendering function into core implicitron. The unblocks an example in the facebookresearch/co3d repo. Reviewed By: bottler Differential Revision: D39257801 fbshipit-source-id: 6841a88a43d4aa364dd86ba83ca2d4c3cf0435a4
364 lines
14 KiB
Python
364 lines
14 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as Fu
|
|
from pytorch3d.implicitron.dataset.dataset_base import DatasetBase, FrameData
|
|
from pytorch3d.implicitron.dataset.utils import is_train_frame
|
|
from pytorch3d.implicitron.models.base_model import EvaluationMode
|
|
from pytorch3d.implicitron.tools.eval_video_trajectory import (
|
|
generate_eval_video_cameras,
|
|
)
|
|
from pytorch3d.implicitron.tools.video_writer import VideoWriter
|
|
from pytorch3d.implicitron.tools.vis_utils import (
|
|
get_visdom_connection,
|
|
make_depth_image,
|
|
)
|
|
from tqdm import tqdm
|
|
from visdom import Visdom
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def render_flyaround(
|
|
dataset: DatasetBase,
|
|
sequence_name: str,
|
|
model: torch.nn.Module,
|
|
output_video_path: str,
|
|
n_flyaround_poses: int = 40,
|
|
fps: int = 20,
|
|
trajectory_type: str = "circular_lsq_fit",
|
|
max_angle: float = 2 * math.pi,
|
|
trajectory_scale: float = 1.1,
|
|
scene_center: Tuple[float, float, float] = (0.0, 0.0, 0.0),
|
|
up: Tuple[float, float, float] = (0.0, -1.0, 0.0),
|
|
traj_offset: float = 0.0,
|
|
n_source_views: int = 9,
|
|
visdom_show_preds: bool = False,
|
|
visdom_environment: str = "render_flyaround",
|
|
visdom_server: str = "http://127.0.0.1",
|
|
visdom_port: int = 8097,
|
|
num_workers: int = 10,
|
|
device: Union[str, torch.device] = "cuda",
|
|
seed: Optional[int] = None,
|
|
video_resize: Optional[Tuple[int, int]] = None,
|
|
output_video_frames_dir: Optional[str] = None,
|
|
visualize_preds_keys: Sequence[str] = (
|
|
"images_render",
|
|
"masks_render",
|
|
"depths_render",
|
|
"_all_source_images",
|
|
),
|
|
):
|
|
"""
|
|
Uses `model` to generate a video consisting of renders of a scene imaged from
|
|
a camera flying around the scene. The scene is specified with the `dataset` object and
|
|
`sequence_name` which denotes the name of the scene whose frames are in `dataset`.
|
|
|
|
Args:
|
|
dataset: The dataset object containing frames from a sequence in `sequence_name`.
|
|
sequence_name: Name of a sequence from `dataset`.
|
|
model: The model whose predictions are going to be visualized.
|
|
output_video_path: The path to the video output by this script.
|
|
n_flyaround_poses: The number of camera poses of the flyaround trajectory.
|
|
fps: Framerate of the output video.
|
|
trajectory_type: The type of the camera trajectory. Can be one of:
|
|
circular_lsq_fit: Camera centers follow a trajectory obtained
|
|
by fitting a 3D circle to train_cameras centers.
|
|
All cameras are looking towards scene_center.
|
|
figure_eight: Figure-of-8 trajectory around the center of the
|
|
central camera of the training dataset.
|
|
trefoil_knot: Same as 'figure_eight', but the trajectory has a shape
|
|
of a trefoil knot (https://en.wikipedia.org/wiki/Trefoil_knot).
|
|
figure_eight_knot: Same as 'figure_eight', but the trajectory has a shape
|
|
of a figure-eight knot
|
|
(https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)).
|
|
trajectory_type: The type of the camera trajectory. Can be one of:
|
|
circular_lsq_fit: Camera centers follow a trajectory obtained
|
|
by fitting a 3D circle to train_cameras centers.
|
|
All cameras are looking towards scene_center.
|
|
figure_eight: Figure-of-8 trajectory around the center of the
|
|
central camera of the training dataset.
|
|
trefoil_knot: Same as 'figure_eight', but the trajectory has a shape
|
|
of a trefoil knot (https://en.wikipedia.org/wiki/Trefoil_knot).
|
|
figure_eight_knot: Same as 'figure_eight', but the trajectory has a shape
|
|
of a figure-eight knot
|
|
(https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)).
|
|
max_angle: Defines the total length of the generated camera trajectory.
|
|
All possible trajectories (set with the `trajectory_type` argument) are
|
|
periodic with the period of `time==2pi`.
|
|
E.g. setting `trajectory_type=circular_lsq_fit` and `time=4pi` will generate
|
|
a trajectory of camera poses rotating the total of 720 deg around the object.
|
|
trajectory_scale: The extent of the trajectory.
|
|
scene_center: The center of the scene in world coordinates which all
|
|
the cameras from the generated trajectory look at.
|
|
up: The "up" vector of the scene (=the normal of the scene floor).
|
|
Active for the `trajectory_type="circular"`.
|
|
traj_offset: 3D offset vector added to each point of the trajectory.
|
|
n_source_views: The number of source views sampled from the known views of the
|
|
training sequence added to each evaluation batch.
|
|
visdom_show_preds: If `True`, exports the visualizations to visdom.
|
|
visdom_environment: The name of the visdom environment.
|
|
visdom_server: The address of the visdom server.
|
|
visdom_port: The visdom port.
|
|
num_workers: The number of workers used to load the training data.
|
|
seed: The random seed used for reproducible sampling of the source views.
|
|
video_resize: Optionally, defines the size of the output video.
|
|
output_video_frames_dir: If specified, the frames of the output video are going
|
|
to be permanently stored in this directory.
|
|
visualize_preds_keys: The names of the model predictions to visualize.
|
|
"""
|
|
|
|
if seed is None:
|
|
seed = hash(sequence_name)
|
|
|
|
if visdom_show_preds:
|
|
viz = get_visdom_connection(server=visdom_server, port=visdom_port)
|
|
else:
|
|
viz = None
|
|
|
|
logger.info(f"Loading all data of sequence '{sequence_name}'.")
|
|
seq_idx = list(dataset.sequence_indices_in_order(sequence_name))
|
|
train_data = _load_whole_dataset(dataset, seq_idx, num_workers=num_workers)
|
|
assert all(train_data.sequence_name[0] == sn for sn in train_data.sequence_name)
|
|
sequence_set_name = "train" if is_train_frame(train_data.frame_type)[0] else "test"
|
|
logger.info(f"Sequence set = {sequence_set_name}.")
|
|
train_cameras = train_data.camera
|
|
time = torch.linspace(0, max_angle, n_flyaround_poses + 1)[:n_flyaround_poses]
|
|
test_cameras = generate_eval_video_cameras(
|
|
train_cameras,
|
|
time=time,
|
|
n_eval_cams=n_flyaround_poses,
|
|
trajectory_type=trajectory_type,
|
|
trajectory_scale=trajectory_scale,
|
|
scene_center=scene_center,
|
|
up=up,
|
|
focal_length=None,
|
|
principal_point=torch.zeros(n_flyaround_poses, 2),
|
|
traj_offset_canonical=(0.0, 0.0, traj_offset),
|
|
)
|
|
|
|
# sample the source views reproducibly
|
|
with torch.random.fork_rng():
|
|
torch.manual_seed(seed)
|
|
source_views_i = torch.randperm(len(seq_idx))[:n_source_views]
|
|
|
|
# add the first dummy view that will get replaced with the target camera
|
|
source_views_i = Fu.pad(source_views_i, [1, 0])
|
|
source_views = [seq_idx[i] for i in source_views_i.tolist()]
|
|
batch = _load_whole_dataset(dataset, source_views, num_workers=num_workers)
|
|
assert all(batch.sequence_name[0] == sn for sn in batch.sequence_name)
|
|
|
|
preds_total = []
|
|
for n in tqdm(range(n_flyaround_poses), total=n_flyaround_poses):
|
|
# set the first batch camera to the target camera
|
|
for k in ("R", "T", "focal_length", "principal_point"):
|
|
getattr(batch.camera, k)[0] = getattr(test_cameras[n], k)
|
|
|
|
# Move to cuda
|
|
net_input = batch.to(device)
|
|
with torch.no_grad():
|
|
preds = model(**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION})
|
|
|
|
# make sure we dont overwrite something
|
|
assert all(k not in preds for k in net_input.keys())
|
|
preds.update(net_input) # merge everything into one big dict
|
|
|
|
# Render the predictions to images
|
|
rendered_pred = _images_from_preds(preds)
|
|
preds_total.append(rendered_pred)
|
|
|
|
# show the preds every 5% of the export iterations
|
|
if visdom_show_preds and (
|
|
n % max(n_flyaround_poses // 20, 1) == 0 or n == n_flyaround_poses - 1
|
|
):
|
|
assert viz is not None
|
|
_show_predictions(
|
|
preds_total,
|
|
sequence_name=batch.sequence_name[0],
|
|
viz=viz,
|
|
viz_env=visdom_environment,
|
|
)
|
|
|
|
logger.info(f"Exporting videos for sequence {sequence_name} ...")
|
|
_generate_prediction_videos(
|
|
preds_total,
|
|
sequence_name=batch.sequence_name[0],
|
|
viz=viz,
|
|
viz_env=visdom_environment,
|
|
fps=fps,
|
|
video_path=output_video_path,
|
|
resize=video_resize,
|
|
video_frames_dir=output_video_frames_dir,
|
|
)
|
|
|
|
|
|
def _load_whole_dataset(
|
|
dataset: torch.utils.data.Dataset, idx: Sequence[int], num_workers: int = 10
|
|
):
|
|
load_all_dataloader = torch.utils.data.DataLoader(
|
|
torch.utils.data.Subset(dataset, idx),
|
|
batch_size=len(idx),
|
|
num_workers=num_workers,
|
|
shuffle=False,
|
|
collate_fn=FrameData.collate,
|
|
)
|
|
return next(iter(load_all_dataloader))
|
|
|
|
|
|
def _images_from_preds(preds: Dict[str, Any]):
|
|
imout = {}
|
|
for k in (
|
|
"image_rgb",
|
|
"images_render",
|
|
"fg_probability",
|
|
"masks_render",
|
|
"depths_render",
|
|
"depth_map",
|
|
"_all_source_images",
|
|
):
|
|
if k == "_all_source_images" and "image_rgb" in preds:
|
|
src_ims = preds["image_rgb"][1:].cpu().detach().clone()
|
|
v = _stack_images(src_ims, None)[None]
|
|
else:
|
|
if k not in preds or preds[k] is None:
|
|
print(f"cant show {k}")
|
|
continue
|
|
v = preds[k].cpu().detach().clone()
|
|
if k.startswith("depth"):
|
|
mask_resize = Fu.interpolate(
|
|
preds["masks_render"],
|
|
size=preds[k].shape[2:],
|
|
mode="nearest",
|
|
)
|
|
v = make_depth_image(preds[k], mask_resize)
|
|
if v.shape[1] == 1:
|
|
v = v.repeat(1, 3, 1, 1)
|
|
imout[k] = v.detach().cpu()
|
|
|
|
return imout
|
|
|
|
|
|
def _stack_images(ims: torch.Tensor, size: Optional[Tuple[int, int]]):
|
|
ba = ims.shape[0]
|
|
H = int(np.ceil(np.sqrt(ba)))
|
|
W = H
|
|
n_add = H * W - ba
|
|
if n_add > 0:
|
|
ims = torch.cat((ims, torch.zeros_like(ims[:1]).repeat(n_add, 1, 1, 1)))
|
|
|
|
ims = ims.view(H, W, *ims.shape[1:])
|
|
cated = torch.cat([torch.cat(list(row), dim=2) for row in ims], dim=1)
|
|
if size is not None:
|
|
cated = Fu.interpolate(cated[None], size=size, mode="bilinear")[0]
|
|
return cated.clamp(0.0, 1.0)
|
|
|
|
|
|
def _show_predictions(
|
|
preds: List[Dict[str, Any]],
|
|
sequence_name: str,
|
|
viz: Visdom,
|
|
viz_env: str = "visualizer",
|
|
predicted_keys: Sequence[str] = (
|
|
"images_render",
|
|
"masks_render",
|
|
"depths_render",
|
|
"_all_source_images",
|
|
),
|
|
n_samples=10,
|
|
one_image_width=200,
|
|
):
|
|
"""Given a list of predictions visualize them into a single image using visdom."""
|
|
assert isinstance(preds, list)
|
|
|
|
pred_all = []
|
|
# Randomly choose a subset of the rendered images, sort by ordr in the sequence
|
|
n_samples = min(n_samples, len(preds))
|
|
pred_idx = sorted(random.sample(list(range(len(preds))), n_samples))
|
|
for predi in pred_idx:
|
|
# Make the concatentation for the same camera vertically
|
|
pred_all.append(
|
|
torch.cat(
|
|
[
|
|
torch.nn.functional.interpolate(
|
|
preds[predi][k].cpu(),
|
|
scale_factor=one_image_width / preds[predi][k].shape[3],
|
|
mode="bilinear",
|
|
).clamp(0.0, 1.0)
|
|
for k in predicted_keys
|
|
],
|
|
dim=2,
|
|
)
|
|
)
|
|
# Concatenate the images horizontally
|
|
pred_all_cat = torch.cat(pred_all, dim=3)[0]
|
|
viz.image(
|
|
pred_all_cat,
|
|
win="show_predictions",
|
|
env=viz_env,
|
|
opts={"title": f"pred_{sequence_name}"},
|
|
)
|
|
|
|
|
|
def _generate_prediction_videos(
|
|
preds: List[Dict[str, Any]],
|
|
sequence_name: str,
|
|
viz: Optional[Visdom] = None,
|
|
viz_env: str = "visualizer",
|
|
predicted_keys: Sequence[str] = (
|
|
"images_render",
|
|
"masks_render",
|
|
"depths_render",
|
|
"_all_source_images",
|
|
),
|
|
fps: int = 20,
|
|
video_path: str = "/tmp/video",
|
|
video_frames_dir: Optional[str] = None,
|
|
resize: Optional[Tuple[int, int]] = None,
|
|
):
|
|
"""Given a list of predictions create and visualize rotating videos of the
|
|
objects using visdom.
|
|
"""
|
|
|
|
# make sure the target video directory exists
|
|
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
|
|
|
# init a video writer for each predicted key
|
|
vws = {}
|
|
for k in predicted_keys:
|
|
vws[k] = VideoWriter(
|
|
fps=fps,
|
|
out_path=f"{video_path}_{sequence_name}_{k}.mp4",
|
|
cache_dir=os.path.join(video_frames_dir, f"{sequence_name}_{k}"),
|
|
)
|
|
|
|
for rendered_pred in tqdm(preds):
|
|
for k in predicted_keys:
|
|
vws[k].write_frame(
|
|
rendered_pred[k][0].clip(0.0, 1.0).detach().cpu().numpy(),
|
|
resize=resize,
|
|
)
|
|
|
|
for k in predicted_keys:
|
|
vws[k].get_video(quiet=True)
|
|
logger.info(f"Generated {vws[k].out_path}.")
|
|
if viz is not None:
|
|
viz.video(
|
|
videofile=vws[k].out_path,
|
|
env=viz_env,
|
|
win=k, # we reuse the same window otherwise visdom dies
|
|
opts={"title": sequence_name + " " + k},
|
|
)
|