Roman Shapovalov 2f3cd98725 6D representation of rotations.
Summary: Conversion to/from the 6D representation of rotation from the paper http://arxiv.org/abs/1812.07035 ; based on David’s implementation.

Reviewed By: davnov134

Differential Revision: D22234397

fbshipit-source-id: 9e25ee93da7e3a2f2068cbe362cb5edc88649ce0
2020-07-08 04:01:22 -07:00

240 lines
6.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import torch
HAT_INV_SKEW_SYMMETRIC_TOL = 1e-5
def so3_relative_angle(R1, R2, cos_angle: bool = False):
"""
Calculates the relative angle (in radians) between pairs of
rotation matrices `R1` and `R2` with `angle = acos(0.5 * (Trace(R1 R2^T)-1))`
.. note::
This corresponds to a geodesic distance on the 3D manifold of rotation
matrices.
Args:
R1: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
R2: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
cos_angle: If==True return cosine of the relative angle rather than
the angle itself. This can avoid the unstable
calculation of `acos`.
Returns:
Corresponding rotation angles of shape `(minibatch,)`.
If `cos_angle==True`, returns the cosine of the angles.
Raises:
ValueError if `R1` or `R2` is of incorrect shape.
ValueError if `R1` or `R2` has an unexpected trace.
"""
R12 = torch.bmm(R1, R2.permute(0, 2, 1))
return so3_rotation_angle(R12, cos_angle=cos_angle)
def so3_rotation_angle(R, eps: float = 1e-4, cos_angle: bool = False):
"""
Calculates angles (in radians) of a batch of rotation matrices `R` with
`angle = acos(0.5 * (Trace(R)-1))`. The trace of the
input matrices is checked to be in the valid range `[-1-eps,3+eps]`.
The `eps` argument is a small constant that allows for small errors
caused by limited machine precision.
Args:
R: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
eps: Tolerance for the valid trace check.
cos_angle: If==True return cosine of the rotation angles rather than
the angle itself. This can avoid the unstable
calculation of `acos`.
Returns:
Corresponding rotation angles of shape `(minibatch,)`.
If `cos_angle==True`, returns the cosine of the angles.
Raises:
ValueError if `R` is of incorrect shape.
ValueError if `R` has an unexpected trace.
"""
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")
rot_trace = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2]
if ((rot_trace < -1.0 - eps) + (rot_trace > 3.0 + eps)).any():
raise ValueError("A matrix has trace outside valid range [-1-eps,3+eps].")
# clamp to valid range
rot_trace = torch.clamp(rot_trace, -1.0, 3.0)
# phi ... rotation angle
phi = 0.5 * (rot_trace - 1.0)
if cos_angle:
return phi
else:
# pyre-fixme[16]: `float` has no attribute `acos`.
return phi.acos()
def so3_exponential_map(log_rot, eps: float = 0.0001):
"""
Convert a batch of logarithmic representations of rotation matrices `log_rot`
to a batch of 3x3 rotation matrices using Rodrigues formula [1].
In the logarithmic representation, each rotation matrix is represented as
a 3-dimensional vector (`log_rot`) who's l2-norm and direction correspond
to the magnitude of the rotation angle and the axis of rotation respectively.
The conversion has a singularity around `log(R) = 0`
which is handled by clamping controlled with the `eps` argument.
Args:
log_rot: Batch of vectors of shape `(minibatch , 3)`.
eps: A float constant handling the conversion singularity.
Returns:
Batch of rotation matrices of shape `(minibatch , 3 , 3)`.
Raises:
ValueError if `log_rot` is of incorrect shape.
[1] https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
"""
_, dim = log_rot.shape
if dim != 3:
raise ValueError("Input tensor shape has to be Nx3.")
nrms = (log_rot * log_rot).sum(1)
# phis ... rotation angles
rot_angles = torch.clamp(nrms, eps).sqrt()
rot_angles_inv = 1.0 / rot_angles
fac1 = rot_angles_inv * rot_angles.sin()
fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())
skews = hat(log_rot)
R = (
# pyre-fixme[16]: `float` has no attribute `__getitem__`.
fac1[:, None, None] * skews
+ fac2[:, None, None] * torch.bmm(skews, skews)
+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None]
)
return R
def so3_log_map(R, eps: float = 0.0001):
"""
Convert a batch of 3x3 rotation matrices `R`
to a batch of 3-dimensional matrix logarithms of rotation matrices
The conversion has a singularity around `(R=I)` which is handled
by clamping controlled with the `eps` argument.
Args:
R: batch of rotation matrices of shape `(minibatch, 3, 3)`.
eps: A float constant handling the conversion singularity.
Returns:
Batch of logarithms of input rotation matrices
of shape `(minibatch, 3)`.
Raises:
ValueError if `R` is of incorrect shape.
ValueError if `R` has an unexpected trace.
"""
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")
phi = so3_rotation_angle(R)
phi_sin = phi.sin()
phi_denom = (
torch.clamp(phi_sin.abs(), eps) * phi_sin.sign()
+ (phi_sin == 0).type_as(phi) * eps
)
log_rot_hat = (phi / (2.0 * phi_denom))[:, None, None] * (R - R.permute(0, 2, 1))
log_rot = hat_inv(log_rot_hat)
return log_rot
def hat_inv(h):
"""
Compute the inverse Hat operator [1] of a batch of 3x3 matrices.
Args:
h: Batch of skew-symmetric matrices of shape `(minibatch, 3, 3)`.
Returns:
Batch of 3d vectors of shape `(minibatch, 3, 3)`.
Raises:
ValueError if `h` is of incorrect shape.
ValueError if `h` not skew-symmetric.
[1] https://en.wikipedia.org/wiki/Hat_operator
"""
N, dim1, dim2 = h.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")
ss_diff = (h + h.permute(0, 2, 1)).abs().max()
if float(ss_diff) > HAT_INV_SKEW_SYMMETRIC_TOL:
raise ValueError("One of input matrices not skew-symmetric.")
x = h[:, 2, 1]
y = h[:, 0, 2]
z = h[:, 1, 0]
v = torch.stack((x, y, z), dim=1)
return v
def hat(v):
"""
Compute the Hat operator [1] of a batch of 3D vectors.
Args:
v: Batch of vectors of shape `(minibatch , 3)`.
Returns:
Batch of skew-symmetric matrices of shape
`(minibatch, 3 , 3)` where each matrix is of the form:
`[ 0 -v_z v_y ]
[ v_z 0 -v_x ]
[ -v_y v_x 0 ]`
Raises:
ValueError if `v` is of incorrect shape.
[1] https://en.wikipedia.org/wiki/Hat_operator
"""
N, dim = v.shape
if dim != 3:
raise ValueError("Input vectors have to be 3-dimensional.")
h = v.new_zeros(N, 3, 3)
x, y, z = v.unbind(1)
h[:, 0, 1] = -z
h[:, 0, 2] = y
h[:, 1, 0] = z
h[:, 1, 2] = -x
h[:, 2, 0] = -y
h[:, 2, 1] = x
return h