pytorch3d/pytorch3d/loss/mesh_laplacian_smoothing.py
Jeremy Reizenstein fa81953380 test_build
Summary: Ensure copyright header consistency and translation unit name uniqueness.

Reviewed By: nikhilaravi

Differential Revision: D20438802

fbshipit-source-id: 9820cfe4c6efab016a0a8589dfa24bb526692f83
2020-03-16 07:54:56 -07:00

195 lines
6.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import torch
def mesh_laplacian_smoothing(meshes, method: str = "uniform"):
r"""
Computes the laplacian smoothing objective for a batch of meshes.
This function supports three variants of Laplacian smoothing,
namely with uniform weights("uniform"), with cotangent weights ("cot"),
and cotangent cuvature ("cotcurv").For more details read [1, 2].
Args:
meshes: Meshes object with a batch of meshes.
method: str specifying the method for the laplacian.
Returns:
loss: Average laplacian smoothing loss across the batch.
Returns 0 if meshes contains no meshes or all empty meshes.
Consider a mesh M = (V, F), with verts of shape Nx3 and faces of shape Mx3.
The Laplacian matrix L is a NxN tensor such that LV gives a tensor of vectors:
for a uniform Laplacian, LuV[i] points to the centroid of its neighboring
vertices, a cotangent Laplacian LcV[i] is known to be an approximation of
the surface normal, while the curvature variant LckV[i] scales the normals
by the discrete mean curvature. For vertex i, assume S[i] is the set of
neighboring vertices to i, a_ij and b_ij are the "outside" angles in the
two triangles connecting vertex v_i and its neighboring vertex v_j
for j in S[i], as seen in the diagram below.
.. code-block:: python
a_ij
/\
/ \
/ \
/ \
v_i /________\ v_j
\ /
\ /
\ /
\ /
\/
b_ij
The definition of the Laplacian is LV[i] = sum_j w_ij (v_j - v_i)
For the uniform variant, w_ij = 1 / |S[i]|
For the cotangent variant,
w_ij = (cot a_ij + cot b_ij) / (sum_k cot a_ik + cot b_ik)
For the cotangent curvature, w_ij = (cot a_ij + cot b_ij) / (4 A[i])
where A[i] is the sum of the areas of all triangles containing vertex v_i.
There is a nice trigonometry identity to compute cotangents. Consider a triangle
with side lengths A, B, C and angles a, b, c.
.. code-block:: python
c
/|\
/ | \
/ | \
B / H| \ A
/ | \
/ | \
/a_____|_____b\
C
Then cot a = (B^2 + C^2 - A^2) / 4 * area
We know that area = CH/2, and by the law of cosines we have
A^2 = B^2 + C^2 - 2BC cos a => B^2 + C^2 - A^2 = 2BC cos a
Putting these together, we get:
B^2 + C^2 - A^2 2BC cos a
_______________ = _________ = (B/H) cos a = cos a / sin a = cot a
4 * area 2CH
[1] Desbrun et al, "Implicit fairing of irregular meshes using diffusion
and curvature flow", SIGGRAPH 1999.
[2] Nealan et al, "Laplacian Mesh Optimization", Graphite 2006.
"""
if meshes.isempty():
return torch.tensor(
[0.0], dtype=torch.float32, device=meshes.device, requires_grad=True
)
N = len(meshes)
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
num_verts_per_mesh = meshes.num_verts_per_mesh() # (N,)
verts_packed_idx = meshes.verts_packed_to_mesh_idx() # (sum(V_n),)
weights = num_verts_per_mesh.gather(0, verts_packed_idx) # (sum(V_n),)
weights = 1.0 / weights.float()
# We don't want to backprop through the computation of the Laplacian;
# just treat it as a magic constant matrix that is used to transform
# verts into normals
with torch.no_grad():
if method == "uniform":
L = meshes.laplacian_packed()
elif method in ["cot", "cotcurv"]:
L, inv_areas = laplacian_cot(meshes)
if method == "cot":
norm_w = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
idx = norm_w > 0
norm_w[idx] = 1.0 / norm_w[idx]
else:
norm_w = 0.25 * inv_areas
else:
raise ValueError("Method should be one of {uniform, cot, cotcurv}")
if method == "uniform":
loss = L.mm(verts_packed)
elif method == "cot":
loss = L.mm(verts_packed) * norm_w - verts_packed
elif method == "cotcurv":
loss = (L.mm(verts_packed) - verts_packed) * norm_w
loss = loss.norm(dim=1)
loss = loss * weights
return loss.sum() / N
def laplacian_cot(meshes):
"""
Returns the Laplacian matrix with cotangent weights and the inverse of the
face areas.
Args:
meshes: Meshes object with a batch of meshes.
Returns:
2-element tuple containing
- **L**: FloatTensor of shape (V,V) for the Laplacian matrix (V = sum(V_n))
Here, L[i, j] = cot a_ij + cot b_ij iff (i, j) is an edge in meshes.
See the description above for more clarity.
- **inv_areas**: FloatTensor of shape (V,) containing the inverse of sum of
face areas containing each vertex
"""
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
faces_packed = meshes.faces_packed() # (sum(F_n), 3)
# V = sum(V_n), F = sum(F_n)
V, F = verts_packed.shape[0], faces_packed.shape[0]
face_verts = verts_packed[faces_packed]
v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2]
# Side lengths of each triangle, of shape (sum(F_n),)
# A is the side opposite v1, B is opposite v2, and C is opposite v3
A = (v1 - v2).norm(dim=1)
B = (v0 - v2).norm(dim=1)
C = (v0 - v1).norm(dim=1)
# Area of each triangle (with Heron's formula); shape is (sum(F_n),)
s = 0.5 * (A + B + C)
# note that the area can be negative (close to 0) causing nans after sqrt()
# we clip it to a small positive value
area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
# Compute cotangents of angles, of shape (sum(F_n), 3)
A2, B2, C2 = A * A, B * B, C * C
cota = (B2 + C2 - A2) / area
cotb = (A2 + C2 - B2) / area
cotc = (A2 + B2 - C2) / area
cot = torch.stack([cota, cotb, cotc], dim=1)
cot /= 4.0
# Construct a sparse matrix by basically doing:
# L[v1, v2] = cota
# L[v2, v0] = cotb
# L[v0, v1] = cotc
ii = faces_packed[:, [1, 2, 0]]
jj = faces_packed[:, [2, 0, 1]]
idx = torch.stack([ii, jj], dim=0).view(2, F * 3)
L = torch.sparse.FloatTensor(idx, cot.view(-1), (V, V))
# Make it symmetric; this means we are also setting
# L[v2, v1] = cota
# L[v0, v2] = cotb
# L[v1, v0] = cotc
L += L.t()
# For each vertex, compute the sum of areas for triangles containing it.
idx = faces_packed.view(-1)
inv_areas = torch.zeros(V, dtype=torch.float32, device=meshes.device)
val = torch.stack([area] * 3, dim=1).view(-1)
inv_areas.scatter_add_(0, idx, val)
idx = inv_areas > 0
inv_areas[idx] = 1.0 / inv_areas[idx]
inv_areas = inv_areas.view(-1, 1)
return L, inv_areas