mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-03 12:22:49 +08:00

Differential Revision: D29458533 fbshipit-source-id: d9ef216fdbb677e49371ad91ea5e9355146c1c52
178 lines
7.1 KiB
Python
178 lines
7.1 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
"""
|
|
This module implements utility functions for sampling points from
|
|
batches of meshes.
|
|
"""
|
|
import sys
|
|
from typing import Tuple, Union
|
|
|
|
import torch
|
|
from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals
|
|
from pytorch3d.ops.packed_to_padded import packed_to_padded
|
|
from pytorch3d.renderer.mesh.rasterizer import Fragments as MeshFragments
|
|
|
|
|
|
def sample_points_from_meshes(
|
|
meshes,
|
|
num_samples: int = 10000,
|
|
return_normals: bool = False,
|
|
return_textures: bool = False,
|
|
) -> Union[
|
|
torch.Tensor,
|
|
Tuple[torch.Tensor, torch.Tensor],
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
|
]:
|
|
"""
|
|
Convert a batch of meshes to a batch of pointclouds by uniformly sampling
|
|
points on the surface of the mesh with probability proportional to the
|
|
face area.
|
|
|
|
Args:
|
|
meshes: A Meshes object with a batch of N meshes.
|
|
num_samples: Integer giving the number of point samples per mesh.
|
|
return_normals: If True, return normals for the sampled points.
|
|
return_textures: If True, return textures for the sampled points.
|
|
|
|
Returns:
|
|
3-element tuple containing
|
|
|
|
- **samples**: FloatTensor of shape (N, num_samples, 3) giving the
|
|
coordinates of sampled points for each mesh in the batch. For empty
|
|
meshes the corresponding row in the samples array will be filled with 0.
|
|
- **normals**: FloatTensor of shape (N, num_samples, 3) giving a normal vector
|
|
to each sampled point. Only returned if return_normals is True.
|
|
For empty meshes the corresponding row in the normals array will
|
|
be filled with 0.
|
|
- **textures**: FloatTensor of shape (N, num_samples, C) giving a C-dimensional
|
|
texture vector to each sampled point. Only returned if return_textures is True.
|
|
For empty meshes the corresponding row in the textures array will
|
|
be filled with 0.
|
|
|
|
Note that in a future releases, we will replace the 3-element tuple output
|
|
with a `Pointclouds` datastructure, as follows
|
|
|
|
.. code-block:: python
|
|
|
|
Pointclouds(samples, normals=normals, features=textures)
|
|
"""
|
|
if meshes.isempty():
|
|
raise ValueError("Meshes are empty.")
|
|
|
|
verts = meshes.verts_packed()
|
|
if not torch.isfinite(verts).all():
|
|
raise ValueError("Meshes contain nan or inf.")
|
|
|
|
if return_textures and meshes.textures is None:
|
|
raise ValueError("Meshes do not contain textures.")
|
|
|
|
faces = meshes.faces_packed()
|
|
mesh_to_face = meshes.mesh_to_faces_packed_first_idx()
|
|
num_meshes = len(meshes)
|
|
num_valid_meshes = torch.sum(meshes.valid) # Non empty meshes.
|
|
|
|
# Initialize samples tensor with fill value 0 for empty meshes.
|
|
samples = torch.zeros((num_meshes, num_samples, 3), device=meshes.device)
|
|
|
|
# Only compute samples for non empty meshes
|
|
with torch.no_grad():
|
|
areas, _ = mesh_face_areas_normals(verts, faces) # Face areas can be zero.
|
|
max_faces = meshes.num_faces_per_mesh().max().item()
|
|
areas_padded = packed_to_padded(
|
|
areas, mesh_to_face[meshes.valid], max_faces
|
|
) # (N, F)
|
|
|
|
# TODO (gkioxari) Confirm multinomial bug is not present with real data.
|
|
sample_face_idxs = areas_padded.multinomial(
|
|
num_samples, replacement=True
|
|
) # (N, num_samples)
|
|
sample_face_idxs += mesh_to_face[meshes.valid].view(num_valid_meshes, 1)
|
|
|
|
# Get the vertex coordinates of the sampled faces.
|
|
face_verts = verts[faces]
|
|
v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2]
|
|
|
|
# Randomly generate barycentric coords.
|
|
w0, w1, w2 = _rand_barycentric_coords(
|
|
num_valid_meshes, num_samples, verts.dtype, verts.device
|
|
)
|
|
|
|
# Use the barycentric coords to get a point on each sampled face.
|
|
a = v0[sample_face_idxs] # (N, num_samples, 3)
|
|
b = v1[sample_face_idxs]
|
|
c = v2[sample_face_idxs]
|
|
samples[meshes.valid] = w0[:, :, None] * a + w1[:, :, None] * b + w2[:, :, None] * c
|
|
|
|
if return_normals:
|
|
# Initialize normals tensor with fill value 0 for empty meshes.
|
|
# Normals for the sampled points are face normals computed from
|
|
# the vertices of the face in which the sampled point lies.
|
|
normals = torch.zeros((num_meshes, num_samples, 3), device=meshes.device)
|
|
vert_normals = (v1 - v0).cross(v2 - v1, dim=1)
|
|
vert_normals = vert_normals / vert_normals.norm(dim=1, p=2, keepdim=True).clamp(
|
|
min=sys.float_info.epsilon
|
|
)
|
|
vert_normals = vert_normals[sample_face_idxs]
|
|
normals[meshes.valid] = vert_normals
|
|
|
|
if return_textures:
|
|
# fragment data are of shape NxHxWxK. Here H=S, W=1 & K=1.
|
|
pix_to_face = sample_face_idxs.view(len(meshes), num_samples, 1, 1) # NxSx1x1
|
|
bary = torch.stack((w0, w1, w2), dim=2).unsqueeze(2).unsqueeze(2) # NxSx1x1x3
|
|
# zbuf and dists are not used in `sample_textures` so we initialize them with dummy
|
|
dummy = torch.zeros(
|
|
(len(meshes), num_samples, 1, 1), device=meshes.device, dtype=torch.float32
|
|
) # NxSx1x1
|
|
fragments = MeshFragments(
|
|
pix_to_face=pix_to_face, zbuf=dummy, bary_coords=bary, dists=dummy
|
|
)
|
|
textures = meshes.sample_textures(fragments) # NxSx1x1xC
|
|
textures = textures[:, :, 0, 0, :] # NxSxC
|
|
|
|
# return
|
|
# TODO(gkioxari) consider returning a Pointclouds instance [breaking]
|
|
if return_normals and return_textures:
|
|
# pyre-fixme[61]: `normals` may not be initialized here.
|
|
# pyre-fixme[61]: `textures` may not be initialized here.
|
|
return samples, normals, textures
|
|
if return_normals: # return_textures is False
|
|
# pyre-fixme[61]: `normals` may not be initialized here.
|
|
return samples, normals
|
|
if return_textures: # return_normals is False
|
|
# pyre-fixme[61]: `textures` may not be initialized here.
|
|
return samples, textures
|
|
return samples
|
|
|
|
|
|
def _rand_barycentric_coords(
|
|
size1, size2, dtype: torch.dtype, device: torch.device
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Helper function to generate random barycentric coordinates which are uniformly
|
|
distributed over a triangle.
|
|
|
|
Args:
|
|
size1, size2: The number of coordinates generated will be size1*size2.
|
|
Output tensors will each be of shape (size1, size2).
|
|
dtype: Datatype to generate.
|
|
device: A torch.device object on which the outputs will be allocated.
|
|
|
|
Returns:
|
|
w0, w1, w2: Tensors of shape (size1, size2) giving random barycentric
|
|
coordinates
|
|
"""
|
|
uv = torch.rand(2, size1, size2, dtype=dtype, device=device)
|
|
u, v = uv[0], uv[1]
|
|
u_sqrt = u.sqrt()
|
|
w0 = 1.0 - u_sqrt
|
|
w1 = u_sqrt * (1.0 - v)
|
|
w2 = u_sqrt * v
|
|
# pyre-fixme[7]: Expected `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` but
|
|
# got `Tuple[float, typing.Any, typing.Any]`.
|
|
return w0, w1, w2
|