pytorch3d/tests/pulsar/test_depth.py
Patrick Labatut af93f34834 License lint codebase
Summary: License lint codebase

Reviewed By: theschnitz

Differential Revision: D29001799

fbshipit-source-id: 5c59869911785b0181b1663bbf430bc8b7fb2909
2021-06-22 03:45:27 -07:00

100 lines
3.5 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""Test the sorting of the closest spheres."""
import logging
import os
import sys
import unittest
from os import path
import imageio
import numpy as np
import torch
# fmt: off
# Make the mixin available.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
from common_testing import TestCaseMixin # isort:skip # noqa: E402
# fmt: on
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth")
class TestDepth(TestCaseMixin, unittest.TestCase):
"""Test different numbers of channels."""
def test_basic(self):
from pytorch3d.renderer.points.pulsar import Renderer
for device in devices:
gamma = 1e-5
max_depth = 15.0
min_depth = 5.0
renderer = Renderer(
256,
256,
10000,
orthogonal_projection=True,
right_handed_system=False,
n_channels=1,
).to(device)
data = torch.load(IN_REF_FP, map_location="cpu")
# For creating the reference files.
# Use in case of updates.
# data["pos"] = torch.rand_like(data["pos"])
# data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1.
# data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1.
# data["pos"][:, 2] = data["pos"][:, 2] + 9.5
result, result_info = renderer.forward(
data["pos"].to(device),
data["col"].to(device),
data["rad"].to(device),
data["cam_params"].to(device),
gamma,
min_depth=min_depth,
max_depth=max_depth,
return_forward_info=True,
bg_col=torch.zeros(1, device=device, dtype=torch.float32),
percent_allowed_difference=0.01,
)
depth_map = Renderer.depth_map_from_result_info_nograd(result_info)
depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / (
depth_map.max() - depth_map[depth_map > 0.0].min()
) + 50
if not os.environ.get("FB_TEST", False):
imageio.imwrite(
path.join(
path.dirname(__file__),
"test_out",
"test_depth_test_basic_depth.png",
),
depth_vis.cpu().numpy().astype(np.uint8),
)
# For creating the reference files.
# Use in case of updates.
# torch.save(
# data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
# )
# torch.save(
# {"sphere_ids": sphere_ids, "depth_map": depth_map},
# path.join(path.dirname(__file__), "reference", "nr0000-out.pth"),
# )
# sys.exit(0)
reference = torch.load(OUT_REF_FP, map_location="cpu")
self.assertClose(reference["depth_map"].to(device), depth_map)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
unittest.main()