mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
Summary: License lint codebase Reviewed By: theschnitz Differential Revision: D29001799 fbshipit-source-id: 5c59869911785b0181b1663bbf430bc8b7fb2909
742 lines
29 KiB
Python
742 lines
29 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import copy
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
|
|
from ..common.types import Device, make_device
|
|
from ..transforms import Scale, Transform3d
|
|
from . import utils as struct_utils
|
|
|
|
|
|
_Scalar = Union[int, float]
|
|
_Vector = Union[torch.Tensor, Tuple[_Scalar, ...], List[_Scalar]]
|
|
_ScalarOrVector = Union[_Scalar, _Vector]
|
|
|
|
_VoxelSize = _ScalarOrVector
|
|
_Translation = _Vector
|
|
|
|
_TensorBatch = Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]
|
|
|
|
|
|
class Volumes:
|
|
"""
|
|
This class provides functions for working with batches of volumetric grids
|
|
of possibly varying spatial sizes.
|
|
|
|
VOLUME DENSITIES
|
|
|
|
The Volumes class can be either constructed from a 5D tensor of
|
|
`densities` of size `batch x density_dim x depth x height x width` or
|
|
from a list of differently-sized 4D tensors `[D_1, ..., D_batch]`,
|
|
where each `D_i` is of size `[density_dim x depth_i x height_i x width_i]`.
|
|
|
|
In case the `Volumes` object is initialized from the list of `densities`,
|
|
the list of tensors is internally converted to a single 5D tensor by
|
|
zero-padding the relevant dimensions. Both list and padded representations can be
|
|
accessed with the `Volumes.densities()` or `Volumes.densities_list()` getters.
|
|
The sizes of the individual volumes in the structure can be retrieved
|
|
with the `Volumes.get_grid_sizes()` getter.
|
|
|
|
The `Volumes` class is immutable. I.e. after generating a `Volumes` object,
|
|
one cannot change its properties, such as `self._densities` or `self._features`
|
|
anymore.
|
|
|
|
|
|
VOLUME FEATURES
|
|
|
|
While the `densities` field is intended to represent various measures of the
|
|
"density" of the volume cells (opacity, signed/unsigned distances
|
|
from the nearest surface, ...), one can additionally initialize the
|
|
object with the `features` argument. `features` are either a 5D tensor
|
|
of shape `batch x feature_dim x depth x height x width` or a list of
|
|
of differently-sized 4D tensors `[F_1, ..., F_batch]`,
|
|
where each `F_i` is of size `[feature_dim x depth_i x height_i x width_i]`.
|
|
`features` are intended to describe other properties of volume cells,
|
|
such as per-voxel 3D vectors of RGB colors that can be later used
|
|
for rendering the volume.
|
|
|
|
|
|
VOLUME COORDINATES
|
|
|
|
Additionally, the `Volumes` class keeps track of the locations of the
|
|
centers of the volume cells in the local volume coordinates as well as in
|
|
the world coordinates.
|
|
|
|
Local coordinates:
|
|
- Represent the locations of the volume cells in the local coordinate
|
|
frame of the volume.
|
|
- The center of the voxel indexed with `[·, ·, 0, 0, 0]` in the volume
|
|
has its 3D local coordinate set to `[-1, -1, -1]`, while the voxel
|
|
at index `[·, ·, depth_i-1, height_i-1, width_i-1]` has its
|
|
3D local coordinate set to `[1, 1, 1]`.
|
|
- The first/second/third coordinate of each of the 3D per-voxel
|
|
XYZ vector denotes the horizontal/vertical/depth-wise position
|
|
respectively. I.e the order of the coordinate dimensions in the
|
|
volume is reversed w.r.t. the order of the 3D coordinate vectors.
|
|
- The intermediate coordinates between `[-1, -1, -1]` and `[1, 1, 1]`.
|
|
are linearly interpolated over the spatial dimensions of the volume.
|
|
- Note that the convention is the same as for the 5D version of the
|
|
`torch.nn.functional.grid_sample` function called with
|
|
`align_corners==True`.
|
|
- Note that the local coordinate convention of `Volumes`
|
|
(+X = left to right, +Y = top to bottom, +Z = away from the user)
|
|
is *different* from the world coordinate convention of the
|
|
renderer for `Meshes` or `Pointclouds`
|
|
(+X = right to left, +Y = bottom to top, +Z = away from the user).
|
|
|
|
World coordinates:
|
|
- These define the locations of the centers of the volume cells
|
|
in the world coordinates.
|
|
- They are specified with the following mapping that converts
|
|
points `x_local` in the local coordinates to points `x_world`
|
|
in the world coordinates:
|
|
```
|
|
x_world = (
|
|
x_local * (volume_size - 1) * 0.5 * voxel_size
|
|
) - volume_translation,
|
|
```
|
|
here `voxel_size` specifies the size of each voxel of the volume,
|
|
and `volume_translation` is the 3D offset of the central voxel of
|
|
the volume w.r.t. the origin of the world coordinate frame.
|
|
Both `voxel_size` and `volume_translation` are specified in
|
|
the world coordinate units. `volume_size` is the spatial size of
|
|
the volume in form of a 3D vector `[width, height, depth]`.
|
|
- Given the above definition of `x_world`, one can derive the
|
|
inverse mapping from `x_world` to `x_local` as follows:
|
|
```
|
|
x_local = (
|
|
(x_world + volume_translation) / (0.5 * voxel_size)
|
|
) / (volume_size - 1)
|
|
```
|
|
- For a trivial volume with `volume_translation==[0, 0, 0]`
|
|
with `voxel_size=-1`, `x_world` would range
|
|
from -(volume_size-1)/2` to `+(volume_size-1)/2`.
|
|
|
|
Coordinate tensors that denote the locations of each of the volume cells in
|
|
local / world coordinates (with shape `(depth x height x width x 3)`)
|
|
can be retrieved by calling the `Volumes.get_coord_grid()` getter with the
|
|
appropriate `world_coordinates` argument.
|
|
|
|
Internally, the mapping between `x_local` and `x_world` is represented
|
|
as a `Transform3D` object `Volumes._local_to_world_transform`.
|
|
Users can access the relevant transformations with the
|
|
`Volumes.get_world_to_local_coords_transform()` and
|
|
`Volumes.get_local_to_world_coords_transform()`
|
|
functions.
|
|
|
|
Example coordinate conversion:
|
|
- For a "trivial" volume with `voxel_size = 1.`,
|
|
`volume_translation=[0., 0., 0.]`, and the spatial size of
|
|
`DxHxW = 5x5x5`, the point `x_world = (-2, 0, 2)` gets mapped
|
|
to `x_local=(-1, 0, 1)`.
|
|
- For a "trivial" volume `v` with `voxel_size = 1.`,
|
|
`volume_translation=[0., 0., 0.]`, the following holds:
|
|
```
|
|
torch.nn.functional.grid_sample(
|
|
v.densities(),
|
|
v.get_coord_grid(world_coordinates=False),
|
|
align_corners=True,
|
|
) == v.densities(),
|
|
```
|
|
i.e. sampling the volume at trivial local coordinates
|
|
(no scaling with `voxel_size`` or shift with `volume_translation`)
|
|
results in the same volume.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
densities: _TensorBatch,
|
|
features: Optional[_TensorBatch] = None,
|
|
voxel_size: _VoxelSize = 1.0,
|
|
volume_translation: _Translation = (0.0, 0.0, 0.0),
|
|
):
|
|
"""
|
|
Args:
|
|
**densities**: Batch of input feature volume occupancies of shape
|
|
`(minibatch, density_dim, depth, height, width)`, or a list
|
|
of 4D tensors `[D_1, ..., D_minibatch]` where each `D_i` has
|
|
shape `(density_dim, depth_i, height_i, width_i)`.
|
|
Typically, each voxel contains a non-negative number
|
|
corresponding to its opaqueness.
|
|
**features**: Batch of input feature volumes of shape:
|
|
`(minibatch, feature_dim, depth, height, width)` or a list
|
|
of 4D tensors `[F_1, ..., F_minibatch]` where each `F_i` has
|
|
shape `(feature_dim, depth_i, height_i, width_i)`.
|
|
The field is optional and can be set to `None` in case features are
|
|
not required.
|
|
**voxel_size**: Denotes the size of each volume voxel in world units.
|
|
Has to be one of:
|
|
a) A scalar (square voxels)
|
|
b) 3-tuple or a 3-list of scalars
|
|
c) a Tensor of shape (3,)
|
|
d) a Tensor of shape (minibatch, 3)
|
|
e) a Tensor of shape (minibatch, 1)
|
|
f) a Tensor of shape (1,) (square voxels)
|
|
**volume_translation**: Denotes the 3D translation of the center
|
|
of the volume in world units. Has to be one of:
|
|
a) 3-tuple or a 3-list of scalars
|
|
b) a Tensor of shape (3,)
|
|
c) a Tensor of shape (minibatch, 3)
|
|
d) a Tensor of shape (1,) (square voxels)
|
|
"""
|
|
|
|
# handle densities
|
|
densities, grid_sizes = self._convert_densities_features_to_tensor(
|
|
densities, "densities"
|
|
)
|
|
|
|
# take device from densities
|
|
self.device = densities.device
|
|
|
|
# assign to the internal buffers
|
|
self._densities = densities
|
|
self._grid_sizes = grid_sizes
|
|
|
|
# handle features
|
|
self._features = None
|
|
if features is not None:
|
|
self._set_features(features)
|
|
|
|
# set the local_to_world transform
|
|
self._set_local_to_world_transform(
|
|
voxel_size=voxel_size, volume_translation=volume_translation
|
|
)
|
|
|
|
def _convert_densities_features_to_tensor(
|
|
self, x: _TensorBatch, var_name: str
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Handle the `densities` or `features` arguments to the constructor.
|
|
"""
|
|
if isinstance(x, (list, tuple)):
|
|
x_tensor = struct_utils.list_to_padded(x)
|
|
if any(x_.ndim != 4 for x_ in x):
|
|
raise ValueError(
|
|
f"`{var_name}` has to be a list of 4-dim tensors of shape: "
|
|
f"({var_name}_dim, height, width, depth)"
|
|
)
|
|
if any(x_.shape[0] != x[0].shape[0] for x_ in x):
|
|
raise ValueError(
|
|
f"Each entry in the list of `{var_name}` has to have the "
|
|
"same number of channels (first dimension in the tensor)."
|
|
)
|
|
x_shapes = torch.stack(
|
|
[
|
|
torch.tensor(
|
|
list(x_.shape[1:]), dtype=torch.long, device=x_tensor.device
|
|
)
|
|
for x_ in x
|
|
],
|
|
dim=0,
|
|
)
|
|
elif torch.is_tensor(x):
|
|
if x.ndim != 5:
|
|
raise ValueError(
|
|
f"`{var_name}` has to be a 5-dim tensor of shape: "
|
|
f"(minibatch, {var_name}_dim, height, width, depth)"
|
|
)
|
|
x_tensor = x
|
|
x_shapes = torch.tensor(
|
|
list(x.shape[2:]), dtype=torch.long, device=x.device
|
|
)[None].repeat(x.shape[0], 1)
|
|
else:
|
|
raise ValueError(
|
|
f"{var_name} must be either a list or a tensor with "
|
|
f"shape (batch_size, {var_name}_dim, H, W, D)."
|
|
)
|
|
return x_tensor, x_shapes
|
|
|
|
def _voxel_size_translation_to_transform(
|
|
self,
|
|
voxel_size: torch.Tensor,
|
|
volume_translation: torch.Tensor,
|
|
batch_size: int,
|
|
) -> Transform3d:
|
|
"""
|
|
Converts the `voxel_size` and `volume_translation` constructor arguments
|
|
to the internal `Transform3D` object `local_to_world_transform`.
|
|
"""
|
|
volume_size_zyx = self.get_grid_sizes().float()
|
|
volume_size_xyz = volume_size_zyx[:, [2, 1, 0]]
|
|
|
|
# x_local = (
|
|
# (x_world + volume_translation) / (0.5 * voxel_size)
|
|
# ) / (volume_size - 1)
|
|
|
|
# x_world = (
|
|
# x_local * (volume_size - 1) * 0.5 * voxel_size
|
|
# ) - volume_translation
|
|
|
|
local_to_world_transform = Scale(
|
|
(volume_size_xyz - 1) * voxel_size * 0.5, device=self.device
|
|
).translate(-volume_translation)
|
|
|
|
return local_to_world_transform
|
|
|
|
def _handle_voxel_size(
|
|
self, voxel_size: _VoxelSize, batch_size: int
|
|
) -> torch.Tensor:
|
|
"""
|
|
Handle the `voxel_size` argument to the `Volumes` constructor.
|
|
"""
|
|
err_msg = (
|
|
"voxel_size has to be either a 3-tuple of scalars, or a scalar, or"
|
|
" a torch.Tensor of shape (3,) or (1,) or (minibatch, 3) or (minibatch, 1)."
|
|
)
|
|
if isinstance(voxel_size, (float, int)):
|
|
# convert a scalar to a 3-element tensor
|
|
voxel_size = torch.full(
|
|
(1, 3), voxel_size, device=self.device, dtype=torch.float32
|
|
)
|
|
elif isinstance(voxel_size, torch.Tensor):
|
|
if voxel_size.numel() == 1:
|
|
# convert a single-element tensor to a 3-element one
|
|
voxel_size = voxel_size.view(-1).repeat(3)
|
|
elif len(voxel_size.shape) == 2 and (
|
|
voxel_size.shape[0] == batch_size and voxel_size.shape[1] == 1
|
|
):
|
|
voxel_size = voxel_size.repeat(1, 3)
|
|
return self._convert_volume_property_to_tensor(voxel_size, batch_size, err_msg)
|
|
|
|
def _handle_volume_translation(
|
|
self, translation: _Translation, batch_size: int
|
|
) -> torch.Tensor:
|
|
"""
|
|
Handle the `volume_translation` argument to the `Volumes` constructor.
|
|
"""
|
|
err_msg = (
|
|
"`volume_translation` has to be either a 3-tuple of scalars, or"
|
|
" a Tensor of shape (1,3) or (minibatch, 3) or (3,)`."
|
|
)
|
|
return self._convert_volume_property_to_tensor(translation, batch_size, err_msg)
|
|
|
|
def _convert_volume_property_to_tensor(
|
|
self, x: _Vector, batch_size: int, err_msg: str
|
|
) -> torch.Tensor:
|
|
"""
|
|
Handle the `volume_translation` or `voxel_size` argument to
|
|
the Volumes constructor.
|
|
Return a tensor of shape (N, 3) where N is the batch_size.
|
|
"""
|
|
if isinstance(x, (list, tuple)):
|
|
if len(x) != 3:
|
|
raise ValueError(err_msg)
|
|
x = torch.tensor(x, device=self.device, dtype=torch.float32)[None]
|
|
x = x.repeat((batch_size, 1))
|
|
elif isinstance(x, torch.Tensor):
|
|
ok = (
|
|
(x.shape[0] == 1 and x.shape[1] == 3)
|
|
or (x.shape[0] == 3 and len(x.shape) == 1)
|
|
or (x.shape[0] == batch_size and x.shape[1] == 3)
|
|
)
|
|
if not ok:
|
|
raise ValueError(err_msg)
|
|
if x.device != self.device:
|
|
x = x.to(self.device)
|
|
if x.shape[0] == 3 and len(x.shape) == 1:
|
|
x = x[None]
|
|
if x.shape[0] == 1:
|
|
x = x.repeat((batch_size, 1))
|
|
else:
|
|
raise ValueError(err_msg)
|
|
|
|
return x
|
|
|
|
def get_coord_grid(self, world_coordinates: bool = True) -> torch.Tensor:
|
|
"""
|
|
Return the 3D coordinate grid of the volumetric grid
|
|
in local (`world_coordinates=False`) or world coordinates
|
|
(`world_coordinates=True`).
|
|
|
|
The grid records location of each center of the corresponding volume voxel.
|
|
|
|
Local coordinates are scaled s.t. the values along one side of the
|
|
volume are in range [-1, 1].
|
|
|
|
Args:
|
|
**world_coordinates**: if `True`, the method
|
|
returns the grid in the world coordinates,
|
|
otherwise, in local coordinates.
|
|
|
|
Returns:
|
|
**coordinate_grid**: The grid of coordinates of shape
|
|
`(minibatch, depth, height, width, 3)`, where `minibatch`,
|
|
`height`, `width` and `depth` are the batch size, height, width
|
|
and depth of the volume `features` or `densities`.
|
|
"""
|
|
# TODO(dnovotny): Implement caching of the coordinate grid.
|
|
return self._calculate_coordinate_grid(world_coordinates=world_coordinates)
|
|
|
|
def _calculate_coordinate_grid(
|
|
self, world_coordinates: bool = True
|
|
) -> torch.Tensor:
|
|
"""
|
|
Calculate the 3D coordinate grid of the volumetric grid either in
|
|
in local (`world_coordinates=False`) or
|
|
world coordinates (`world_coordinates=True`) .
|
|
"""
|
|
|
|
densities = self.densities()
|
|
ba, _, de, he, wi = densities.shape
|
|
grid_sizes = self.get_grid_sizes()
|
|
|
|
# generate coordinate axes
|
|
vol_axes = [
|
|
torch.linspace(-1.0, 1.0, r, dtype=torch.float32, device=self.device)
|
|
for r in (de, he, wi)
|
|
]
|
|
|
|
# generate per-coord meshgrids
|
|
Z, Y, X = torch.meshgrid(vol_axes)
|
|
|
|
# stack the coord grids ... this order matches the coordinate convention
|
|
# of torch.nn.grid_sample
|
|
vol_coords_local = torch.stack((X, Y, Z), dim=3)[None].repeat(ba, 1, 1, 1, 1)
|
|
|
|
# get grid sizes relative to the maximal volume size
|
|
grid_sizes_relative = (
|
|
torch.tensor([[de, he, wi]], device=grid_sizes.device, dtype=torch.float32)
|
|
- 1
|
|
) / (grid_sizes - 1).float()
|
|
|
|
if (grid_sizes_relative != 1.0).any():
|
|
# if any of the relative sizes != 1.0, adjust the grid
|
|
grid_sizes_relative_reshape = grid_sizes_relative[:, [2, 1, 0]][
|
|
:, None, None, None
|
|
]
|
|
vol_coords_local *= grid_sizes_relative_reshape
|
|
vol_coords_local += grid_sizes_relative_reshape - 1
|
|
|
|
if world_coordinates:
|
|
vol_coords = self.local_to_world_coords(vol_coords_local)
|
|
else:
|
|
vol_coords = vol_coords_local
|
|
|
|
return vol_coords
|
|
|
|
def get_local_to_world_coords_transform(self) -> Transform3d:
|
|
"""
|
|
Return a Transform3d object that converts points in the
|
|
the local coordinate frame of the volume to world coordinates.
|
|
Local volume coordinates are scaled s.t. the coordinates along one
|
|
side of the volume are in range [-1, 1].
|
|
|
|
Returns:
|
|
**local_to_world_transform**: A Transform3d object converting
|
|
points from local coordinates to the world coordinates.
|
|
"""
|
|
return self._local_to_world_transform
|
|
|
|
def get_world_to_local_coords_transform(self) -> Transform3d:
|
|
"""
|
|
Return a Transform3d object that converts points in the
|
|
world coordinates to the local coordinate frame of the volume.
|
|
Local volume coordinates are scaled s.t. the coordinates along one
|
|
side of the volume are in range [-1, 1].
|
|
|
|
Returns:
|
|
**world_to_local_transform**: A Transform3d object converting
|
|
points from world coordinates to local coordinates.
|
|
"""
|
|
return self.get_local_to_world_coords_transform().inverse()
|
|
|
|
def world_to_local_coords(self, points_3d_world: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Convert a batch of 3D point coordinates `points_3d_world` of shape
|
|
(minibatch, ..., dim) in the world coordinates to
|
|
the local coordinate frame of the volume. Local volume
|
|
coordinates are scaled s.t. the coordinates along one side of the volume
|
|
are in range [-1, 1].
|
|
|
|
Args:
|
|
**points_3d_world**: A tensor of shape `(minibatch, ..., 3)`
|
|
containing the 3D coordinates of a set of points that will
|
|
be converted from the local volume coordinates (ranging
|
|
within [-1, 1]) to the world coordinates
|
|
defined by the `self.center` and `self.voxel_size` parameters.
|
|
|
|
Returns:
|
|
**points_3d_local**: `points_3d_world` converted to the local
|
|
volume coordinates of shape `(minibatch, ..., 3)`.
|
|
"""
|
|
pts_shape = points_3d_world.shape
|
|
return (
|
|
self.get_world_to_local_coords_transform()
|
|
.transform_points(points_3d_world.view(pts_shape[0], -1, 3))
|
|
.view(pts_shape)
|
|
)
|
|
|
|
def local_to_world_coords(self, points_3d_local: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Convert a batch of 3D point coordinates `points_3d_local` of shape
|
|
(minibatch, ..., dim) in the local coordinate frame of the volume
|
|
to the world coordinates.
|
|
|
|
Args:
|
|
**points_3d_local**: A tensor of shape `(minibatch, ..., 3)`
|
|
containing the 3D coordinates of a set of points that will
|
|
be converted from the local volume coordinates (ranging
|
|
within [-1, 1]) to the world coordinates
|
|
defined by the `self.center` and `self.voxel_size` parameters.
|
|
|
|
Returns:
|
|
**points_3d_world**: `points_3d_local` converted to the world
|
|
coordinates of the volume of shape `(minibatch, ..., 3)`.
|
|
"""
|
|
pts_shape = points_3d_local.shape
|
|
return (
|
|
self.get_local_to_world_coords_transform()
|
|
.transform_points(points_3d_local.view(pts_shape[0], -1, 3))
|
|
.view(pts_shape)
|
|
)
|
|
|
|
def __len__(self) -> int:
|
|
# pyre-fixme[16]: `List` has no attribute `shape`.
|
|
return self._densities.shape[0]
|
|
|
|
def __getitem__(
|
|
self, index: Union[int, List[int], Tuple[int], slice, torch.Tensor]
|
|
) -> "Volumes":
|
|
"""
|
|
Args:
|
|
index: Specifying the index of the volume to retrieve.
|
|
Can be an int, slice, list of ints or a boolean or a long tensor.
|
|
|
|
Returns:
|
|
Volumes object with selected volumes. The tensors are not cloned.
|
|
"""
|
|
if isinstance(index, int):
|
|
index = torch.LongTensor([index])
|
|
elif isinstance(index, (slice, list, tuple)):
|
|
pass
|
|
elif torch.is_tensor(index):
|
|
if index.dim() != 1 or index.dtype.is_floating_point:
|
|
raise IndexError(index)
|
|
else:
|
|
raise IndexError(index)
|
|
|
|
new = self.__class__(
|
|
# pyre-fixme[16]: `Optional` has no attribute `__getitem__`.
|
|
features=self.features()[index] if self._features is not None else None,
|
|
densities=self.densities()[index],
|
|
)
|
|
# dont forget to update grid_sizes!
|
|
new._grid_sizes = self.get_grid_sizes()[index]
|
|
new._local_to_world_transform = self._local_to_world_transform[index]
|
|
return new
|
|
|
|
def features(self) -> Optional[torch.Tensor]:
|
|
"""
|
|
Returns the features of the volume.
|
|
|
|
Returns:
|
|
**features**: The tensor of volume features.
|
|
"""
|
|
return self._features
|
|
|
|
def densities(self) -> torch.Tensor:
|
|
"""
|
|
Returns the densities of the volume.
|
|
|
|
Returns:
|
|
**densities**: The tensor of volume densities.
|
|
"""
|
|
# pyre-fixme[7]: Expected `Tensor` but got `Union[List[torch.Tensor],
|
|
# torch.Tensor]`.
|
|
return self._densities
|
|
|
|
def densities_list(self) -> List[torch.Tensor]:
|
|
"""
|
|
Get the list representation of the densities.
|
|
|
|
Returns:
|
|
list of tensors of densities of shape (dim_i, D_i, H_i, W_i).
|
|
"""
|
|
return self._features_densities_list(self.densities())
|
|
|
|
def features_list(self) -> List[torch.Tensor]:
|
|
"""
|
|
Get the list representation of the features.
|
|
|
|
Returns:
|
|
list of tensors of features of shape (dim_i, D_i, H_i, W_i)
|
|
or `None` for feature-less volumes.
|
|
"""
|
|
features_ = self.features()
|
|
if features_ is None:
|
|
# No features provided so return None
|
|
# pyre-fixme[7]: Expected `List[torch.Tensor]` but got `None`.
|
|
return None
|
|
return self._features_densities_list(features_)
|
|
|
|
def _features_densities_list(self, x: torch.Tensor) -> List[torch.Tensor]:
|
|
"""
|
|
Retrieve the list representation of features/densities.
|
|
|
|
Args:
|
|
x: self.features() or self.densities()
|
|
|
|
Returns:
|
|
list of tensors of features/densities of shape (dim_i, D_i, H_i, W_i).
|
|
"""
|
|
x_dim = x.shape[1]
|
|
pad_sizes = torch.nn.functional.pad(
|
|
self.get_grid_sizes(), [1, 0], mode="constant", value=x_dim
|
|
)
|
|
x_list = struct_utils.padded_to_list(x, pad_sizes.tolist())
|
|
return x_list
|
|
|
|
def get_grid_sizes(self) -> torch.LongTensor:
|
|
"""
|
|
Returns the sizes of individual volumetric grids in the structure.
|
|
|
|
Returns:
|
|
**grid_sizes**: Tensor of spatial sizes of each of the volumes
|
|
of size (batchsize, 3), where i-th row holds (D_i, H_i, W_i).
|
|
"""
|
|
return self._grid_sizes
|
|
|
|
def update_padded(
|
|
self, new_densities: torch.Tensor, new_features: Optional[torch.Tensor] = None
|
|
) -> "Volumes":
|
|
"""
|
|
Returns a Volumes structure with updated padded tensors and copies of
|
|
the auxiliary tensors `self._local_to_world_transform`,
|
|
`device` and `self._grid_sizes`. This function allows for an update of
|
|
densities (and features) without having to explicitly
|
|
convert it to the list representation for heterogeneous batches.
|
|
|
|
Args:
|
|
new_densities: FloatTensor of shape (N, dim_density, D, H, W)
|
|
new_features: (optional) FloatTensor of shape (N, dim_feature, D, H, W)
|
|
|
|
Returns:
|
|
Volumes with updated features and densities
|
|
"""
|
|
new = copy.copy(self)
|
|
new._set_densities(new_densities)
|
|
if new_features is None:
|
|
new._features = None
|
|
else:
|
|
new._set_features(new_features)
|
|
return new
|
|
|
|
def _set_features(self, features: _TensorBatch) -> None:
|
|
self._set_densities_features("features", features)
|
|
|
|
def _set_densities(self, densities: _TensorBatch) -> None:
|
|
self._set_densities_features("densities", densities)
|
|
|
|
def _set_densities_features(self, var_name: str, x: _TensorBatch) -> None:
|
|
x_tensor, grid_sizes = self._convert_densities_features_to_tensor(x, var_name)
|
|
if x_tensor.device != self.device:
|
|
raise ValueError(
|
|
f"`{var_name}` have to be on the same device as `self.densities`."
|
|
)
|
|
if len(x_tensor.shape) != 5:
|
|
raise ValueError(
|
|
f"{var_name} has to be a 5-dim tensor of shape: "
|
|
f"(minibatch, {var_name}_dim, height, width, depth)"
|
|
)
|
|
|
|
if not (
|
|
(self.get_grid_sizes().shape == grid_sizes.shape)
|
|
and torch.allclose(self.get_grid_sizes(), grid_sizes)
|
|
):
|
|
raise ValueError(
|
|
f"The size of every grid in `{var_name}` has to match the size of"
|
|
"the corresponding `densities` grid."
|
|
)
|
|
setattr(self, "_" + var_name, x_tensor)
|
|
|
|
def _set_local_to_world_transform(
|
|
self,
|
|
voxel_size: _VoxelSize = 1.0,
|
|
volume_translation: _Translation = (0.0, 0.0, 0.0),
|
|
):
|
|
"""
|
|
Sets the internal representation of the transformation between the
|
|
world and local volume coordinates by specifying
|
|
`voxel_size` and `volume_translation`
|
|
|
|
Args:
|
|
**voxel_size**: Denotes the size of input voxels. Has to be one of:
|
|
a) A scalar (square voxels)
|
|
b) 3-tuple or a 3-list of scalars
|
|
c) a Tensor of shape (3,)
|
|
d) a Tensor of shape (minibatch, 3)
|
|
e) a Tensor of shape (1,) (square voxels)
|
|
**volume_translation**: Denotes the 3D translation of the center
|
|
of the volume in world units. Has to be one of:
|
|
a) 3-tuple or a 3-list of scalars
|
|
b) a Tensor of shape (3,)
|
|
c) a Tensor of shape (minibatch, 3)
|
|
d) a Tensor of shape (1,) (square voxels)
|
|
"""
|
|
# handle voxel size and center
|
|
# here we force the tensors to lie on self.device
|
|
voxel_size = self._handle_voxel_size(voxel_size, len(self))
|
|
volume_translation = self._handle_volume_translation(
|
|
volume_translation, len(self)
|
|
)
|
|
self._local_to_world_transform = self._voxel_size_translation_to_transform(
|
|
voxel_size, volume_translation, len(self)
|
|
)
|
|
|
|
def clone(self) -> "Volumes":
|
|
"""
|
|
Deep copy of Volumes object. All internal tensors are cloned
|
|
individually.
|
|
|
|
Returns:
|
|
new Volumes object.
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
def to(self, device: Device, copy: bool = False) -> "Volumes":
|
|
"""
|
|
Match the functionality of torch.Tensor.to()
|
|
If copy = True or the self Tensor is on a different device, the
|
|
returned tensor is a copy of self with the desired torch.device.
|
|
If copy = False and the self Tensor already has the correct torch.device,
|
|
then self is returned.
|
|
|
|
Args:
|
|
device: Device (as str or torch.device) for the new tensor.
|
|
copy: Boolean indicator whether or not to clone self. Default False.
|
|
|
|
Returns:
|
|
Volumes object.
|
|
"""
|
|
device_ = make_device(device)
|
|
if not copy and self.device == device_:
|
|
return self
|
|
|
|
other = self.clone()
|
|
if self.device == device_:
|
|
return other
|
|
|
|
other.device = device_
|
|
# pyre-fixme[16]: `List` has no attribute `to`.
|
|
other._densities = self._densities.to(device_)
|
|
if self._features is not None:
|
|
# pyre-fixme[16]: `Optional` has no attribute `to`.
|
|
other._features = self.features().to(device_)
|
|
other._local_to_world_transform = self.get_local_to_world_coords_transform().to(
|
|
device_
|
|
)
|
|
other._grid_sizes = self._grid_sizes.to(device_)
|
|
return other
|
|
|
|
def cpu(self) -> "Volumes":
|
|
return self.to("cpu")
|
|
|
|
def cuda(self) -> "Volumes":
|
|
return self.to("cuda")
|