pytorch3d/docs/examples/pulsar_basic_unified.py
Patrick Labatut af93f34834 License lint codebase
Summary: License lint codebase

Reviewed By: theschnitz

Differential Revision: D29001799

fbshipit-source-id: 5c59869911785b0181b1663bbf430bc8b7fb2909
2021-06-22 03:45:27 -07:00

90 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This example demonstrates the most trivial use of the pulsar PyTorch3D
interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
import logging
from os import path
import imageio
import torch
from pytorch3d.renderer import (
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
PulsarPointsRenderer,
)
from pytorch3d.structures import Pointclouds
LOGGER = logging.getLogger(__name__)
def cli():
"""
Basic example for the pulsar sphere renderer using the PyTorch3D interface.
Writes to `basic-pt3d.png`.
"""
LOGGER.info("Rendering on GPU...")
torch.manual_seed(1)
n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...])
# Alternatively, you can also use the look_at_view_transform to get R and T:
# R, T = look_at_view_transform(
# dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),),
# )
cameras = PerspectiveCameras(
# The focal length must be double the size for PyTorch3D because of the NDC
# coordinates spanning a range of two - and they must be normalized by the
# sensor width (see the pulsar example). This means we need here
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
focal_length=(5.0 * 2.0 / 2.0,),
R=torch.eye(3, dtype=torch.float32, device=device)[None, ...],
T=torch.zeros((1, 3), dtype=torch.float32, device=device),
image_size=((height, width),),
device=device,
)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
raster_settings = PointsRasterizationSettings(
image_size=(height, width),
radius=vert_rad,
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
# Render.
image = renderer(
pcl,
gamma=(1.0e-1,), # Renderer blending parameter gamma, in [1., 1e-5].
znear=(1.0,),
zfar=(45.0,),
radius_world=True,
bg_col=torch.ones((3,), dtype=torch.float32, device=device),
)[0]
LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png"))
imageio.imsave(
"basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()
)
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()