pytorch3d/tests/implicitron/test_forward_pass.py
Roman Shapovalov a6dada399d Extracted ImplicitronModelBase and unified API for GenericModel and ModelDBIR
Summary:
To avoid model_zoo, we need to make GenericModel pluggable.
I also align creation APIs for convenience.

Reviewed By: bottler, davnov134

Differential Revision: D35933093

fbshipit-source-id: 8228926528eb41a795fbfbe32304b8019197e2b1
2022-05-09 15:23:07 -07:00

107 lines
3.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.implicitron.models.generic_model import GenericModel
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
class TestGenericModel(unittest.TestCase):
def test_gm(self):
# Simple test of a forward and backward pass of the default GenericModel.
device = torch.device("cuda:1")
expand_args_fields(GenericModel)
model = GenericModel()
model.to(device)
n_train_cameras = 2
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
cameras = PerspectiveCameras(R=R, T=T, device=device)
# TODO: make these default to None?
defaulted_args = {
"fg_probability": None,
"depth_map": None,
"mask_crop": None,
"sequence_name": None,
}
with self.assertWarnsRegex(UserWarning, "No main objective found"):
model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
**defaulted_args,
image_rgb=None,
)
target_image_rgb = torch.rand(
(n_train_cameras, 3, model.render_image_height, model.render_image_width),
device=device,
)
train_preds = model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
image_rgb=target_image_rgb,
**defaulted_args,
)
self.assertGreater(train_preds["objective"].item(), 0)
train_preds["objective"].backward()
model.eval()
with torch.no_grad():
# TODO: perhaps this warning should be skipped in eval mode?
with self.assertWarnsRegex(UserWarning, "No main objective found"):
eval_preds = model(
camera=cameras[0],
**defaulted_args,
image_rgb=None,
)
self.assertEqual(
eval_preds["images_render"].shape,
(1, 3, model.render_image_height, model.render_image_width),
)
def test_idr(self):
# Forward pass of GenericModel with IDR.
device = torch.device("cuda:1")
args = get_default_args(GenericModel)
args.renderer_class_type = "SignedDistanceFunctionRenderer"
args.implicit_function_class_type = "IdrFeatureField"
args.implicit_function_IdrFeatureField_args.n_harmonic_functions_xyz = 6
model = GenericModel(**args)
model.to(device)
n_train_cameras = 2
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
cameras = PerspectiveCameras(R=R, T=T, device=device)
defaulted_args = {
"depth_map": None,
"mask_crop": None,
"sequence_name": None,
}
target_image_rgb = torch.rand(
(n_train_cameras, 3, model.render_image_height, model.render_image_width),
device=device,
)
fg_probability = torch.rand(
(n_train_cameras, 1, model.render_image_height, model.render_image_width),
device=device,
)
train_preds = model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
image_rgb=target_image_rgb,
fg_probability=fg_probability,
**defaulted_args,
)
self.assertGreater(train_preds["objective"].item(), 0)