mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: A fairly big refactor of the texturing API with some breaking changes to how textures are defined. Main changes: - There are now 3 types of texture classes: `TexturesUV`, `TexturesAtlas` and `TexturesVertex`. Each class: - has a `sample_textures` function which accepts the `fragments` from rasterization and returns `texels`. This means that the shaders will not need to know the type of the mesh texture which will resolve several issues people were reporting on GitHub. - has a `join_batch` method for joining multiple textures of the same type into a batch Reviewed By: gkioxari Differential Revision: D21067427 fbshipit-source-id: 4b346500a60181e72fdd1b0dd89b5505c7a33926
652 lines
26 KiB
Python
652 lines
26 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from common_testing import TestCaseMixin
|
|
from pytorch3d.renderer.mesh.rasterizer import Fragments
|
|
from pytorch3d.renderer.mesh.textures import (
|
|
TexturesAtlas,
|
|
TexturesUV,
|
|
TexturesVertex,
|
|
_list_to_padded_wrapper,
|
|
)
|
|
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
|
|
from test_meshes import TestMeshes
|
|
|
|
|
|
def tryindex(self, index, tex, meshes, source):
|
|
tex2 = tex[index]
|
|
meshes2 = meshes[index]
|
|
tex_from_meshes = meshes2.textures
|
|
for item in source:
|
|
basic = source[item][index]
|
|
from_texture = getattr(tex2, item + "_padded")()
|
|
from_meshes = getattr(tex_from_meshes, item + "_padded")()
|
|
if isinstance(index, int):
|
|
basic = basic[None]
|
|
|
|
if len(basic) == 0:
|
|
self.assertEquals(len(from_texture), 0)
|
|
self.assertEquals(len(from_meshes), 0)
|
|
else:
|
|
self.assertClose(basic, from_texture)
|
|
self.assertClose(basic, from_meshes)
|
|
self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
|
|
item_list = getattr(tex_from_meshes, item + "_list")()
|
|
self.assertEqual(basic.shape[0], len(item_list))
|
|
for i, elem in enumerate(item_list):
|
|
self.assertClose(elem, basic[i])
|
|
|
|
|
|
class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
|
|
def test_sample_vertex_textures(self):
|
|
"""
|
|
This tests both interpolate_vertex_colors as well as
|
|
interpolate_face_attributes.
|
|
"""
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
vert_tex = torch.tensor(
|
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
|
|
)
|
|
verts_features = vert_tex
|
|
tex = TexturesVertex(verts_features=[verts_features])
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
expected_vals = torch.tensor(
|
|
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
# sample_textures calls interpolate_vertex_colors
|
|
texels = mesh.sample_textures(fragments)
|
|
self.assertTrue(torch.allclose(texels, expected_vals[None, :]))
|
|
|
|
def test_sample_vertex_textures_grad(self):
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
vert_tex = torch.tensor(
|
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
|
|
dtype=torch.float32,
|
|
requires_grad=True,
|
|
)
|
|
verts_features = vert_tex
|
|
tex = TexturesVertex(verts_features=[verts_features])
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
grad_vert_tex = torch.tensor(
|
|
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
|
|
dtype=torch.float32,
|
|
)
|
|
texels = mesh.sample_textures(fragments)
|
|
texels.sum().backward()
|
|
self.assertTrue(hasattr(vert_tex, "grad"))
|
|
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))
|
|
|
|
def test_textures_vertex_init_fail(self):
|
|
# Incorrect sized tensors
|
|
with self.assertRaisesRegex(ValueError, "verts_features"):
|
|
TexturesVertex(verts_features=torch.rand(size=(5, 10)))
|
|
|
|
# Not a list or a tensor
|
|
with self.assertRaisesRegex(ValueError, "verts_features"):
|
|
TexturesVertex(verts_features=(1, 1, 1))
|
|
|
|
def test_clone(self):
|
|
tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(
|
|
tex._verts_features_padded, tex_cloned._verts_features_padded
|
|
)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
|
|
def test_extend(self):
|
|
B = 10
|
|
mesh = TestMeshes.init_mesh(B, 30, 50)
|
|
V = mesh._V
|
|
tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
|
|
)
|
|
N = 20
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
self.assertClose(
|
|
tex_init.verts_features_list()[i],
|
|
new_tex.verts_features_list()[i * N + n],
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate(
|
|
[tex_init.verts_features_padded(), new_tex.verts_features_padded()]
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
num_verts_per_mesh = [9, 6]
|
|
D = 10
|
|
verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
|
|
verts_features_packed = list_to_packed(verts_features_list)[0]
|
|
verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
|
|
tex = TexturesVertex(verts_features=verts_features_list)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_verts_per_mesh = num_verts_per_mesh
|
|
verts_packed = tex1.verts_features_packed()
|
|
verts_verts_list = tex1.verts_features_list()
|
|
verts_padded = tex1.verts_features_padded()
|
|
|
|
for f1, f2 in zip(verts_verts_list, verts_features_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
|
|
self.assertTrue(verts_padded.shape == (2, 9, D))
|
|
|
|
# Case where num_verts_per_mesh is not set and textures
|
|
# are initialized with a padded tensor.
|
|
tex2 = TexturesVertex(verts_features=verts_padded)
|
|
verts_packed = tex2.verts_features_packed()
|
|
verts_list = tex2.verts_features_list()
|
|
|
|
# Packed is just flattened padded as num_verts_per_mesh
|
|
# has not been provided.
|
|
self.assertTrue(verts_packed.shape == (9 * 2, D))
|
|
|
|
for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
|
|
n = num_verts_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
source = {"verts_features": torch.randn(size=(N, 10, 128))}
|
|
tex = TexturesVertex(verts_features=source["verts_features"])
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, 10, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|
|
|
|
|
|
class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
|
|
def test_sample_texture_atlas(self):
|
|
N, F, R = 1, 2, 2
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
faces_atlas = torch.rand(size=(N, F, R, R, 3))
|
|
tex = TexturesAtlas(atlas=faces_atlas)
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
expected_vals = torch.tensor(
|
|
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
|
|
)
|
|
expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
|
|
expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
|
|
expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]
|
|
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
texels = mesh.textures.sample_textures(fragments)
|
|
self.assertTrue(torch.allclose(texels, expected_vals))
|
|
|
|
def test_textures_atlas_grad(self):
|
|
N, F, R = 1, 2, 2
|
|
verts = torch.randn((4, 3), dtype=torch.float32)
|
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
|
|
faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
|
|
tex = TexturesAtlas(atlas=faces_atlas)
|
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=torch.ones_like(pix_to_face),
|
|
dists=torch.ones_like(pix_to_face),
|
|
)
|
|
texels = mesh.textures.sample_textures(fragments)
|
|
grad_tex = torch.rand_like(texels)
|
|
grad_expected = torch.zeros_like(faces_atlas)
|
|
grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
|
|
grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
|
|
texels.backward(grad_tex)
|
|
self.assertTrue(hasattr(faces_atlas, "grad"))
|
|
self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))
|
|
|
|
def test_textures_atlas_init_fail(self):
|
|
# Incorrect sized tensors
|
|
with self.assertRaisesRegex(ValueError, "atlas"):
|
|
TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))
|
|
|
|
# Not a list or a tensor
|
|
with self.assertRaisesRegex(ValueError, "atlas"):
|
|
TexturesAtlas(atlas=(1, 1, 1))
|
|
|
|
def test_clone(self):
|
|
tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
|
|
def test_extend(self):
|
|
B = 10
|
|
mesh = TestMeshes.init_mesh(B, 30, 50)
|
|
F = mesh._F
|
|
tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
|
|
)
|
|
N = 20
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
self.assertClose(
|
|
tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
R = 2
|
|
N = 20
|
|
num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
|
|
atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
|
|
tex = TexturesAtlas(atlas=atlas_list)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
|
|
atlas_packed = tex1.atlas_packed()
|
|
atlas_list_new = tex1.atlas_list()
|
|
atlas_padded = tex1.atlas_padded()
|
|
|
|
for f1, f2 in zip(atlas_list_new, atlas_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
sum_F = num_faces_per_mesh.sum()
|
|
max_F = num_faces_per_mesh.max().item()
|
|
self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
|
|
self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))
|
|
|
|
# Case where num_faces_per_mesh is not set and textures
|
|
# are initialized with a padded tensor.
|
|
atlas_list_padded = _list_to_padded_wrapper(atlas_list)
|
|
tex2 = TexturesAtlas(atlas=atlas_list_padded)
|
|
atlas_packed = tex2.atlas_packed()
|
|
atlas_list_new = tex2.atlas_list()
|
|
|
|
# Packed is just flattened padded as num_faces_per_mesh
|
|
# has not been provided.
|
|
self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))
|
|
|
|
for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
|
|
n = num_faces_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
source = {"atlas": torch.randn(size=(N, 10, 4, 4, 3))}
|
|
tex = TexturesAtlas(atlas=source["atlas"])
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, 10, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|
|
|
|
|
|
class TestTexturesUV(TestCaseMixin, unittest.TestCase):
|
|
def test_sample_textures_uv(self):
|
|
barycentric_coords = torch.tensor(
|
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
|
|
).view(1, 1, 1, 2, -1)
|
|
dummy_verts = torch.zeros(4, 3)
|
|
vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
|
|
face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
|
|
interpolated_uvs = torch.tensor(
|
|
[[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
|
|
)
|
|
|
|
# Create a dummy texture map
|
|
H = 2
|
|
W = 2
|
|
x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
|
|
y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
|
|
tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
|
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
|
|
fragments = Fragments(
|
|
pix_to_face=pix_to_face,
|
|
bary_coords=barycentric_coords,
|
|
zbuf=pix_to_face,
|
|
dists=pix_to_face,
|
|
)
|
|
|
|
tex = TexturesUV(maps=tex_map, faces_uvs=[face_uvs], verts_uvs=[vert_uvs])
|
|
meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
|
|
mesh_textures = meshes.textures
|
|
texels = mesh_textures.sample_textures(fragments)
|
|
|
|
# Expected output
|
|
pixel_uvs = interpolated_uvs * 2.0 - 1.0
|
|
pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
|
|
tex_map = torch.flip(tex_map, [1])
|
|
tex_map = tex_map.permute(0, 3, 1, 2)
|
|
tex_map = torch.cat([tex_map, tex_map], dim=0)
|
|
expected_out = F.grid_sample(tex_map, pixel_uvs, align_corners=False)
|
|
self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
|
|
|
|
def test_textures_uv_init_fail(self):
|
|
# Maps has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "maps"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3, 4)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# faces_uvs has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "faces_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# verts_uvs has wrong shape
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2, 3)),
|
|
)
|
|
|
|
# verts has different batch dim to faces
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(8, 15, 2)),
|
|
)
|
|
|
|
# maps has different batch dim to faces
|
|
with self.assertRaisesRegex(ValueError, "maps"):
|
|
TexturesUV(
|
|
maps=torch.ones((8, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
# verts on different device to faces
|
|
with self.assertRaisesRegex(ValueError, "verts_uvs"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
|
|
)
|
|
|
|
# maps on different device to faces
|
|
with self.assertRaisesRegex(ValueError, "map"):
|
|
TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3), device="cuda"),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
|
|
def test_clone(self):
|
|
tex = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.rand(size=(5, 10, 3)),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
tex_cloned = tex.clone()
|
|
self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
|
|
self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
|
|
self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
|
|
self.assertSeparate(tex.valid, tex_cloned.valid)
|
|
|
|
def test_extend(self):
|
|
B = 5
|
|
mesh = TestMeshes.init_mesh(B, 30, 50)
|
|
V = mesh._V
|
|
num_faces = mesh.num_faces_per_mesh()
|
|
num_verts = mesh.num_verts_per_mesh()
|
|
faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
|
|
verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
|
|
tex_uv = TexturesUV(
|
|
maps=torch.ones((B, 16, 16, 3)),
|
|
faces_uvs=faces_uvs_list,
|
|
verts_uvs=verts_uvs_list,
|
|
)
|
|
tex_mesh = Meshes(
|
|
verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
|
|
)
|
|
N = 2
|
|
new_mesh = tex_mesh.extend(N)
|
|
|
|
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
|
|
|
|
tex_init = tex_mesh.textures
|
|
new_tex = new_mesh.textures
|
|
|
|
for i in range(len(tex_mesh)):
|
|
for n in range(N):
|
|
self.assertClose(
|
|
tex_init.verts_uvs_list()[i], new_tex.verts_uvs_list()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
|
|
)
|
|
self.assertClose(
|
|
tex_init._num_faces_per_mesh[i],
|
|
new_tex._num_faces_per_mesh[i * N + n],
|
|
)
|
|
|
|
self.assertAllSeparate(
|
|
[
|
|
tex_init.faces_uvs_padded(),
|
|
new_tex.faces_uvs_padded(),
|
|
tex_init.faces_uvs_packed(),
|
|
new_tex.faces_uvs_packed(),
|
|
tex_init.verts_uvs_padded(),
|
|
new_tex.verts_uvs_padded(),
|
|
tex_init.verts_uvs_packed(),
|
|
new_tex.verts_uvs_packed(),
|
|
tex_init.maps_padded(),
|
|
new_tex.maps_padded(),
|
|
]
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tex_mesh.extend(N=-1)
|
|
|
|
def test_padded_to_packed(self):
|
|
# Case where each face in the mesh has 3 unique uv vertex indices
|
|
# - i.e. even if a vertex is shared between multiple faces it will
|
|
# have a unique uv coordinate for each face.
|
|
N = 2
|
|
faces_uvs_list = [
|
|
torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
|
|
torch.tensor([[0, 1, 2], [3, 4, 5]]),
|
|
] # (N, 3, 3)
|
|
verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
|
|
|
|
num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
|
|
num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
|
|
tex = TexturesUV(
|
|
maps=torch.ones((N, 16, 16, 3)),
|
|
faces_uvs=faces_uvs_list,
|
|
verts_uvs=verts_uvs_list,
|
|
)
|
|
|
|
# This is set inside Meshes when textures is passed as an input.
|
|
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
|
|
tex1 = tex.clone()
|
|
tex1._num_faces_per_mesh = num_faces_per_mesh
|
|
tex1._num_verts_per_mesh = num_verts_per_mesh
|
|
verts_packed = tex1.verts_uvs_packed()
|
|
verts_list = tex1.verts_uvs_list()
|
|
verts_padded = tex1.verts_uvs_padded()
|
|
|
|
faces_packed = tex1.faces_uvs_packed()
|
|
faces_list = tex1.faces_uvs_list()
|
|
faces_padded = tex1.faces_uvs_padded()
|
|
|
|
for f1, f2 in zip(faces_list, faces_uvs_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
for f1, f2 in zip(verts_list, verts_uvs_list):
|
|
self.assertTrue((f1 == f2).all().item())
|
|
|
|
self.assertTrue(faces_packed.shape == (3 + 2, 3))
|
|
self.assertTrue(faces_padded.shape == (2, 3, 3))
|
|
self.assertTrue(verts_packed.shape == (9 + 6, 2))
|
|
self.assertTrue(verts_padded.shape == (2, 9, 2))
|
|
|
|
# Case where num_faces_per_mesh is not set and faces_verts_uvs
|
|
# are initialized with a padded tensor.
|
|
tex2 = TexturesUV(
|
|
maps=torch.ones((N, 16, 16, 3)),
|
|
verts_uvs=verts_padded,
|
|
faces_uvs=faces_padded,
|
|
)
|
|
faces_packed = tex2.faces_uvs_packed()
|
|
faces_list = tex2.faces_uvs_list()
|
|
verts_packed = tex2.verts_uvs_packed()
|
|
verts_list = tex2.verts_uvs_list()
|
|
|
|
# Packed is just flattened padded as num_faces_per_mesh
|
|
# has not been provided.
|
|
self.assertTrue(faces_packed.shape == (3 * 2, 3))
|
|
self.assertTrue(verts_packed.shape == (9 * 2, 2))
|
|
|
|
for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
|
|
n = num_faces_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
|
|
n = num_verts_per_mesh[i]
|
|
self.assertTrue((f1[:n] == f2).all().item())
|
|
|
|
def test_to(self):
|
|
tex = TexturesUV(
|
|
maps=torch.ones((5, 16, 16, 3)),
|
|
faces_uvs=torch.randint(size=(5, 10, 3), high=15),
|
|
verts_uvs=torch.rand(size=(5, 15, 2)),
|
|
)
|
|
device = torch.device("cuda:0")
|
|
tex = tex.to(device)
|
|
self.assertTrue(tex._faces_uvs_padded.device == device)
|
|
self.assertTrue(tex._verts_uvs_padded.device == device)
|
|
self.assertTrue(tex._maps_padded.device == device)
|
|
|
|
def test_getitem(self):
|
|
N = 5
|
|
V = 20
|
|
source = {
|
|
"maps": torch.rand(size=(N, 1, 1, 3)),
|
|
"faces_uvs": torch.randint(size=(N, 10, 3), high=V),
|
|
"verts_uvs": torch.randn(size=(N, V, 2)),
|
|
}
|
|
tex = TexturesUV(
|
|
maps=source["maps"],
|
|
faces_uvs=source["faces_uvs"],
|
|
verts_uvs=source["verts_uvs"],
|
|
)
|
|
|
|
verts = torch.rand(size=(N, V, 3))
|
|
faces = torch.randint(size=(N, 10, 3), high=V)
|
|
meshes = Meshes(verts=verts, faces=faces, textures=tex)
|
|
|
|
tryindex(self, 2, tex, meshes, source)
|
|
tryindex(self, slice(0, 2, 1), tex, meshes, source)
|
|
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
|
|
tryindex(self, index, tex, meshes, source)
|
|
index = torch.tensor([1, 2], dtype=torch.int64)
|
|
tryindex(self, index, tex, meshes, source)
|
|
tryindex(self, [2, 4], tex, meshes, source)
|