mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 11:22:49 +08:00
Reviewed By: inseokhwang Differential Revision: D54438157 fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
214 lines
7.6 KiB
Python
214 lines
7.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
# pyre-unsafe
|
|
|
|
|
|
# Note: The #noqa comments below are for unused imports of pluggable implementations
|
|
# which are part of implicitron. They ensure that the registry is prepopulated.
|
|
|
|
import warnings
|
|
from logging import Logger
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import torch
|
|
import tqdm
|
|
from pytorch3d.common.compat import prod
|
|
|
|
from pytorch3d.implicitron.models.renderer.base import ImplicitronRayBundle
|
|
|
|
from pytorch3d.implicitron.tools import image_utils
|
|
|
|
from pytorch3d.implicitron.tools.utils import cat_dataclass
|
|
|
|
|
|
def preprocess_input(
|
|
image_rgb: Optional[torch.Tensor],
|
|
fg_probability: Optional[torch.Tensor],
|
|
depth_map: Optional[torch.Tensor],
|
|
mask_images: bool,
|
|
mask_depths: bool,
|
|
mask_threshold: float,
|
|
bg_color: Tuple[float, float, float],
|
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
"""
|
|
Helper function to preprocess the input images and optional depth maps
|
|
to apply masking if required.
|
|
|
|
Args:
|
|
image_rgb: A tensor of shape `(B, 3, H, W)` containing a batch of rgb images
|
|
corresponding to the source viewpoints from which features will be extracted
|
|
fg_probability: A tensor of shape `(B, 1, H, W)` containing a batch
|
|
of foreground masks with values in [0, 1].
|
|
depth_map: A tensor of shape `(B, 1, H, W)` containing a batch of depth maps.
|
|
mask_images: Whether or not to mask the RGB image background given the
|
|
foreground mask (the `fg_probability` argument of `GenericModel.forward`)
|
|
mask_depths: Whether or not to mask the depth image background given the
|
|
foreground mask (the `fg_probability` argument of `GenericModel.forward`)
|
|
mask_threshold: If greater than 0.0, the foreground mask is
|
|
thresholded by this value before being applied to the RGB/Depth images
|
|
bg_color: RGB values for setting the background color of input image
|
|
if mask_images=True. Defaults to (0.0, 0.0, 0.0). Each renderer has its own
|
|
way to determine the background color of its output, unrelated to this.
|
|
|
|
Returns:
|
|
Modified image_rgb, fg_mask, depth_map
|
|
"""
|
|
if image_rgb is not None and image_rgb.ndim == 3:
|
|
# The FrameData object is used for both frames and batches of frames,
|
|
# and a user might get this error if those were confused.
|
|
# Perhaps a user has a FrameData `fd` representing a single frame and
|
|
# wrote something like `model(**fd)` instead of
|
|
# `model(**fd.collate([fd]))`.
|
|
raise ValueError(
|
|
"Model received unbatched inputs. "
|
|
+ "Perhaps they came from a FrameData which had not been collated."
|
|
)
|
|
|
|
fg_mask = fg_probability
|
|
if fg_mask is not None and mask_threshold > 0.0:
|
|
# threshold masks
|
|
warnings.warn("Thresholding masks!")
|
|
fg_mask = (fg_mask >= mask_threshold).type_as(fg_mask)
|
|
|
|
if mask_images and fg_mask is not None and image_rgb is not None:
|
|
# mask the image
|
|
warnings.warn("Masking images!")
|
|
image_rgb = image_utils.mask_background(
|
|
image_rgb, fg_mask, dim_color=1, bg_color=torch.tensor(bg_color)
|
|
)
|
|
|
|
if mask_depths and fg_mask is not None and depth_map is not None:
|
|
# mask the depths
|
|
assert (
|
|
mask_threshold > 0.0
|
|
), "Depths should be masked only with thresholded masks"
|
|
warnings.warn("Masking depths!")
|
|
depth_map = depth_map * fg_mask
|
|
|
|
return image_rgb, fg_mask, depth_map
|
|
|
|
|
|
def log_loss_weights(loss_weights: Dict[str, float], logger: Logger) -> None:
|
|
"""
|
|
Print a table of the loss weights.
|
|
"""
|
|
loss_weights_message = (
|
|
"-------\nloss_weights:\n"
|
|
+ "\n".join(f"{k:40s}: {w:1.2e}" for k, w in loss_weights.items())
|
|
+ "-------"
|
|
)
|
|
logger.info(loss_weights_message)
|
|
|
|
|
|
def weighted_sum_losses(
|
|
preds: Dict[str, torch.Tensor], loss_weights: Dict[str, float]
|
|
) -> Optional[torch.Tensor]:
|
|
"""
|
|
A helper function to compute the overall loss as the dot product
|
|
of individual loss functions with the corresponding weights.
|
|
"""
|
|
losses_weighted = [
|
|
preds[k] * float(w)
|
|
for k, w in loss_weights.items()
|
|
if (k in preds and w != 0.0)
|
|
]
|
|
if len(losses_weighted) == 0:
|
|
warnings.warn("No main objective found.")
|
|
return None
|
|
loss = sum(losses_weighted)
|
|
assert torch.is_tensor(loss)
|
|
# pyre-fixme[7]: Expected `Optional[Tensor]` but got `int`.
|
|
return loss
|
|
|
|
|
|
def apply_chunked(func, chunk_generator, tensor_collator):
|
|
"""
|
|
Helper function to apply a function on a sequence of
|
|
chunked inputs yielded by a generator and collate
|
|
the result.
|
|
"""
|
|
processed_chunks = [
|
|
func(*chunk_args, **chunk_kwargs)
|
|
for chunk_args, chunk_kwargs in chunk_generator
|
|
]
|
|
|
|
return cat_dataclass(processed_chunks, tensor_collator)
|
|
|
|
|
|
def chunk_generator(
|
|
chunk_size: int,
|
|
ray_bundle: ImplicitronRayBundle,
|
|
chunked_inputs: Dict[str, torch.Tensor],
|
|
tqdm_trigger_threshold: int,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Helper function which yields chunks of rays from the
|
|
input ray_bundle, to be used when the number of rays is
|
|
large and will not fit in memory for rendering.
|
|
"""
|
|
(
|
|
batch_size,
|
|
*spatial_dim,
|
|
n_pts_per_ray,
|
|
) = ray_bundle.lengths.shape # B x ... x n_pts_per_ray
|
|
if n_pts_per_ray > 0 and chunk_size % n_pts_per_ray != 0:
|
|
raise ValueError(
|
|
f"chunk_size_grid ({chunk_size}) should be divisible "
|
|
f"by n_pts_per_ray ({n_pts_per_ray})"
|
|
)
|
|
|
|
n_rays = prod(spatial_dim)
|
|
# special handling for raytracing-based methods
|
|
n_chunks = -(-n_rays * max(n_pts_per_ray, 1) // chunk_size)
|
|
chunk_size_in_rays = -(-n_rays // n_chunks)
|
|
|
|
iter = range(0, n_rays, chunk_size_in_rays)
|
|
if len(iter) >= tqdm_trigger_threshold:
|
|
iter = tqdm.tqdm(iter)
|
|
|
|
def _safe_slice(
|
|
tensor: Optional[torch.Tensor], start_idx: int, end_idx: int
|
|
) -> Any:
|
|
return tensor[start_idx:end_idx] if tensor is not None else None
|
|
|
|
for start_idx in iter:
|
|
end_idx = min(start_idx + chunk_size_in_rays, n_rays)
|
|
bins = (
|
|
None
|
|
if ray_bundle.bins is None
|
|
else ray_bundle.bins.reshape(batch_size, n_rays, n_pts_per_ray + 1)[
|
|
:, start_idx:end_idx
|
|
]
|
|
)
|
|
pixel_radii_2d = (
|
|
None
|
|
if ray_bundle.pixel_radii_2d is None
|
|
else ray_bundle.pixel_radii_2d.reshape(batch_size, -1, 1)[
|
|
:, start_idx:end_idx
|
|
]
|
|
)
|
|
ray_bundle_chunk = ImplicitronRayBundle(
|
|
origins=ray_bundle.origins.reshape(batch_size, -1, 3)[:, start_idx:end_idx],
|
|
directions=ray_bundle.directions.reshape(batch_size, -1, 3)[
|
|
:, start_idx:end_idx
|
|
],
|
|
lengths=ray_bundle.lengths.reshape(batch_size, n_rays, n_pts_per_ray)[
|
|
:, start_idx:end_idx
|
|
],
|
|
xys=ray_bundle.xys.reshape(batch_size, -1, 2)[:, start_idx:end_idx],
|
|
bins=bins,
|
|
pixel_radii_2d=pixel_radii_2d,
|
|
camera_ids=_safe_slice(ray_bundle.camera_ids, start_idx, end_idx),
|
|
camera_counts=_safe_slice(ray_bundle.camera_counts, start_idx, end_idx),
|
|
)
|
|
extra_args = kwargs.copy()
|
|
for k, v in chunked_inputs.items():
|
|
extra_args[k] = v.flatten(2)[:, :, start_idx:end_idx]
|
|
yield [ray_bundle_chunk, *args], extra_args
|