pytorch3d/tests/test_blending.py
Dave Greenwood a0f3dc2d63 allow changes to background_color in BlendParams (#64)
Summary:
BlendParams background_color is immutable , type hint as a sequence allows setting new values in constructor.
Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/64

Reviewed By: bottler

Differential Revision: D20068911

Pulled By: nikhilaravi

fbshipit-source-id: c580a7654dca25629218513841aa16d9d1055588
2020-02-24 13:44:02 -08:00

246 lines
8.9 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import numpy as np
import unittest
import torch
from pytorch3d.renderer.blending import (
BlendParams,
hard_rgb_blend,
sigmoid_alpha_blend,
softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments
def sigmoid_blend_naive(colors, fragments, blend_params):
"""
Naive for loop based implementation of distance based alpha calculation.
Only for test purposes.
"""
pix_to_face = fragments.pix_to_face
dists = fragments.dists
sigma = blend_params.sigma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0
# Loop over k faces and calculate 2D distance based probability
# map.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
alpha *= 1.0 - prob # cumulative product
pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
pixel_colors[n, h, w, 3] = 1.0 - alpha
pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
return torch.flip(pixel_colors, [1])
def softmax_blend_naive(colors, fragments, blend_params):
"""
Naive for loop based implementation of softmax blending.
Only for test purposes.
"""
pix_to_face = fragments.pix_to_face
dists = fragments.dists
zbuf = fragments.zbuf
sigma = blend_params.sigma
gamma = blend_params.gamma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)
# Near and far clipping planes
zfar = 100.0
znear = 1.0
bk_color = blend_params.background_color
if not torch.is_tensor(bk_color):
bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)
# Background color component
delta = np.exp(1e-10 / gamma) * 1e-10
delta = torch.tensor(delta).to(device=device)
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0
weights_k = torch.zeros(K)
zmax = 0.0
# Loop over K to find max z.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
if zinv > zmax:
zmax = zinv
# Loop over K faces to calculate 2D distance based probability
# map and zbuf based weights for colors.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
alpha *= 1.0 - prob # cumulative product
weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)
denom = weights_k.sum() + delta
weights = weights_k / denom
cols = (weights[..., None] * colors[n, h, w, :, :]).sum(dim=0)
pixel_colors[n, h, w, :3] = cols
pixel_colors[n, h, w, :3] += (delta / denom) * bk_color
pixel_colors[n, h, w, 3] = 1.0 - alpha
pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
return torch.flip(pixel_colors, [1])
class TestBlending(unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
def test_hard_rgb_blend(self):
N, H, W, K = 5, 10, 10, 20
pix_to_face = torch.ones((N, H, W, K))
bary_coords = torch.ones((N, H, W, K, 3))
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords,
zbuf=pix_to_face, # dummy
dists=pix_to_face, # dummy
)
colors = bary_coords.clone()
top_k = torch.randn((K, 3))
colors[..., :, :] = top_k
images = hard_rgb_blend(colors, fragments)
expected_vals = torch.ones((N, H, W, 4))
pix_cols = torch.ones_like(expected_vals[..., :3]) * top_k[0, :]
expected_vals[..., :3] = pix_cols
self.assertTrue(torch.allclose(images, expected_vals))
def test_sigmoid_alpha_blend(self):
"""
Test outputs of sigmoid alpha blend tensorised function match those of
the naive iterative version. Also check gradients match.
"""
# Create dummy outputs of rasterization simulating a cube in the centre
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
h = int(S / 2)
pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
s = int(S / 4)
e = int(0.75 * S)
pix_to_face[:, s:e, s:e, :] = pix_to_face_full
bary_coords = torch.ones((N, S, S, K, 3))
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists = torch.randn(size=(N, S, S, K))
dists1 = dists * random_sign_flip
dists2 = dists1.clone()
dists1.requires_grad = True
dists2.requires_grad = True
colors = torch.randn_like(bary_coords)
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=pix_to_face, # dummy
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=pix_to_face, # dummy
dists=dists2,
)
blend_params = BlendParams(sigma=2e-1)
images = sigmoid_alpha_blend(colors, fragments1, blend_params)
images_naive = sigmoid_blend_naive(colors, fragments2, blend_params)
self.assertTrue(torch.allclose(images, images_naive))
torch.manual_seed(231)
images.sum().backward()
self.assertTrue(hasattr(dists1, "grad"))
images_naive.sum().backward()
self.assertTrue(hasattr(dists2, "grad"))
self.assertTrue(torch.allclose(dists1.grad, dists2.grad, rtol=1e-5))
def test_softmax_rgb_blend(self):
# Create dummy outputs of rasterization simulating a cube in the centre
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
h = int(S / 2)
pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
s = int(S / 4)
e = int(0.75 * S)
pix_to_face[:, s:e, s:e, :] = pix_to_face_full
bary_coords = torch.ones((N, S, S, K, 3))
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
zbuf1 = torch.randn(size=(N, S, S, K))
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
dists1 = torch.randn(size=(N, S, S, K)) * random_sign_flip
dists2 = dists1.clone()
zbuf2 = zbuf1.clone()
dists1.requires_grad = True
dists2.requires_grad = True
zbuf1.requires_grad = True
zbuf2.requires_grad = True
colors = torch.randn_like(bary_coords)
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=zbuf1,
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=zbuf2,
dists=dists2,
)
blend_params = BlendParams(sigma=1e-1)
images = softmax_rgb_blend(colors, fragments1, blend_params)
images_naive = softmax_blend_naive(colors, fragments2, blend_params)
self.assertTrue(torch.allclose(images, images_naive))
# Check gradients.
images.sum().backward()
self.assertTrue(hasattr(dists1, "grad"))
self.assertTrue(hasattr(zbuf1, "grad"))
images_naive.sum().backward()
self.assertTrue(hasattr(dists2, "grad"))
self.assertTrue(hasattr(zbuf2, "grad"))
self.assertTrue(torch.allclose(dists1.grad, dists2.grad, atol=2e-5))
self.assertTrue(torch.allclose(zbuf1.grad, zbuf2.grad, atol=2e-5))
def test_blend_params(self):
"""Test colour parameter of BlendParams().
Assert passed value overrides default value.
"""
bp_default = BlendParams()
bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))