pytorch3d/tests/test_volumes.py
Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

882 lines
33 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import copy
import itertools
import random
import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.structures.volumes import Volumes
from pytorch3d.transforms import Scale
class TestVolumes(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
np.random.seed(42)
torch.manual_seed(42)
random.seed(42)
@staticmethod
def _random_volume_list(
num_volumes, min_size, max_size, num_channels, device, rand_sizes=None
):
"""
Init a list of `num_volumes` random tensors of size [num_channels, *rand_size].
If `rand_sizes` is None, rand_size is a 3D long vector sampled
from [min_size, max_size]. Otherwise, rand_size should be a list
[rand_size_1, rand_size_2, ..., rand_size_num_volumes] where each
`rand_size_i` denotes the size of the corresponding `i`-th tensor.
"""
if rand_sizes is None:
rand_sizes = [
[random.randint(min_size, vs) for vs in max_size]
for _ in range(num_volumes)
]
volume_list = [
torch.randn(
size=[num_channels, *rand_size], device=device, dtype=torch.float32
)
for rand_size in rand_sizes
]
return volume_list, rand_sizes
def _check_indexed_volumes(self, v, selected, indices):
for selectedIdx, index in indices:
self.assertClose(selected.densities()[selectedIdx], v.densities()[index])
self.assertClose(
v._local_to_world_transform.get_matrix()[index],
selected._local_to_world_transform.get_matrix()[selectedIdx],
)
if selected.features() is not None:
self.assertClose(selected.features()[selectedIdx], v.features()[index])
def test_get_item(
self,
num_volumes=5,
num_channels=4,
volume_size=(10, 13, 8),
dtype=torch.float32,
):
device = torch.device("cuda:0")
# make sure we have at least 3 volumes to prevent indexing crash
num_volumes = max(num_volumes, 3)
features = torch.randn(
size=[num_volumes, num_channels, *volume_size],
device=device,
dtype=torch.float32,
)
densities = torch.randn(
size=[num_volumes, 1, *volume_size], device=device, dtype=torch.float32
)
features_list, rand_sizes = TestVolumes._random_volume_list(
num_volumes, 3, volume_size, num_channels, device
)
densities_list, _ = TestVolumes._random_volume_list(
num_volumes, 3, volume_size, 1, device, rand_sizes=rand_sizes
)
volume_translation = -torch.randn(num_volumes, 3).type_as(features)
voxel_size = torch.rand(num_volumes, 1).type_as(features) + 0.5
for features_, densities_ in zip(
(None, features, features_list), (densities, densities, densities_list)
):
# init the volume structure
v = Volumes(
features=features_,
densities=densities_,
volume_translation=volume_translation,
voxel_size=voxel_size,
)
# int index
index = 1
v_selected = v[index]
self.assertEqual(len(v_selected), 1)
self._check_indexed_volumes(v, v_selected, [(0, 1)])
# list index
index = [1, 2]
v_selected = v[index]
self.assertEqual(len(v_selected), len(index))
self._check_indexed_volumes(v, v_selected, enumerate(index))
# slice index
index = slice(0, 2, 1)
v_selected = v[0:2]
self.assertEqual(len(v_selected), 2)
self._check_indexed_volumes(v, v_selected, [(0, 0), (1, 1)])
# bool tensor
index = (torch.rand(num_volumes) > 0.5).to(device)
index[:2] = True # make sure smth is selected
v_selected = v[index]
self.assertEqual(len(v_selected), index.sum())
self._check_indexed_volumes(
v,
v_selected,
zip(
torch.arange(index.sum()),
torch.nonzero(index, as_tuple=False).squeeze(),
),
)
# int tensor
index = torch.tensor([1, 2], dtype=torch.int64, device=device)
v_selected = v[index]
self.assertEqual(len(v_selected), index.numel())
self._check_indexed_volumes(v, v_selected, enumerate(index.tolist()))
# invalid index
index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
with self.assertRaises(IndexError):
v_selected = v[index]
index = 1.2 # floating point index
with self.assertRaises(IndexError):
v_selected = v[index]
def test_coord_transforms(self, num_volumes=3, num_channels=4, dtype=torch.float32):
"""
Test the correctness of the conversion between the internal
Transform3D Volumes._local_to_world_transform and the initialization
from the translation and voxel_size.
"""
device = torch.device("cuda:0")
# try for 10 sets of different random sizes/centers/voxel_sizes
for _ in range(10):
size = torch.randint(high=10, size=(3,), low=3).tolist()
densities = torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
)
# init the transformation params
volume_translation = torch.randn(num_volumes, 3)
voxel_size = torch.rand(num_volumes, 3) * 3.0 + 0.5
# get the corresponding Transform3d object
local_offset = torch.tensor(list(size), dtype=torch.float32, device=device)[
[2, 1, 0]
][None].repeat(num_volumes, 1)
local_to_world_transform = (
Scale(0.5 * local_offset - 0.5, device=device)
.scale(voxel_size)
.translate(-volume_translation)
)
# init the volume structures with the scale and translation,
# then get the coord grid in world coords
v_trans_vs = Volumes(
densities=densities,
voxel_size=voxel_size,
volume_translation=volume_translation,
)
grid_rot_trans_vs = v_trans_vs.get_coord_grid(world_coordinates=True)
# map the default local coords to the world coords
# with local_to_world_transform
v_default = Volumes(densities=densities)
grid_default_local = v_default.get_coord_grid(world_coordinates=False)
grid_default_world = local_to_world_transform.transform_points(
grid_default_local.view(num_volumes, -1, 3)
).view(num_volumes, *size, 3)
# check that both grids are the same
self.assertClose(grid_rot_trans_vs, grid_default_world, atol=1e-5)
# check that the transformations are the same
self.assertClose(
v_trans_vs.get_local_to_world_coords_transform().get_matrix(),
local_to_world_transform.get_matrix(),
atol=1e-5,
)
def test_coord_grid_convention(
self, num_volumes=3, num_channels=4, dtype=torch.float32
):
"""
Check that for a trivial volume with spatial size DxHxW=5x7x5:
1) xyz_world=(0, 0, 0) lands right in the middle of the volume
with xyz_local=(0, 0, 0).
2) xyz_world=(-2, 3, 2) results in xyz_local=(-1, 1, -1).
3) The centeral voxel of the volume coordinate grid
has coords x_world=(0, 0, 0) and x_local=(0, 0, 0)
4) grid_sampler(world_coordinate_grid, local_coordinate_grid)
is the same as world_coordinate_grid itself. I.e. the local coordinate
grid matches the grid_sampler coordinate convention.
"""
device = torch.device("cuda:0")
densities = torch.randn(
size=[num_volumes, num_channels, 5, 7, 5],
device=device,
dtype=torch.float32,
)
v_trivial = Volumes(densities=densities)
# check the case with x_world=(0,0,0)
pts_world = torch.zeros(num_volumes, 1, 3, device=device, dtype=torch.float32)
pts_local = v_trivial.world_to_local_coords(pts_world)
pts_local_expected = torch.zeros_like(pts_local)
self.assertClose(pts_local, pts_local_expected)
# check the case with x_world=(-2, 3, -2)
pts_world = torch.tensor([-2, 3, -2], device=device, dtype=torch.float32)[
None, None
].repeat(num_volumes, 1, 1)
pts_local = v_trivial.world_to_local_coords(pts_world)
pts_local_expected = torch.tensor(
[-1, 1, -1], device=device, dtype=torch.float32
)[None, None].repeat(num_volumes, 1, 1)
self.assertClose(pts_local, pts_local_expected)
# check that the central voxel has coords x_world=(0, 0, 0) and x_local(0, 0, 0)
grid_world = v_trivial.get_coord_grid(world_coordinates=True)
grid_local = v_trivial.get_coord_grid(world_coordinates=False)
for grid in (grid_world, grid_local):
x0 = grid[0, :, :, 2, 0]
y0 = grid[0, :, 3, :, 1]
z0 = grid[0, 2, :, :, 2]
for coord_line in (x0, y0, z0):
self.assertClose(coord_line, torch.zeros_like(coord_line), atol=1e-7)
# resample grid_world using grid_sampler with local coords
# -> make sure the resampled version is the same as original
grid_world_resampled = torch.nn.functional.grid_sample(
grid_world.permute(0, 4, 1, 2, 3), grid_local, align_corners=True
).permute(0, 2, 3, 4, 1)
self.assertClose(grid_world_resampled, grid_world, atol=1e-7)
def test_coord_grid_convention_heterogeneous(
self, num_channels=4, dtype=torch.float32
):
"""
Check that for a list of 2 trivial volumes with
spatial sizes DxHxW=(5x7x5, 3x5x5):
1) xyz_world=(0, 0, 0) lands right in the middle of the volume
with xyz_local=(0, 0, 0).
2) xyz_world=((-2, 3, -2), (-2, -2, 1)) results
in xyz_local=((-1, 1, -1), (-1, -1, 1)).
3) The centeral voxel of the volume coordinate grid
has coords x_world=(0, 0, 0) and x_local=(0, 0, 0)
4) grid_sampler(world_coordinate_grid, local_coordinate_grid)
is the same as world_coordinate_grid itself. I.e. the local coordinate
grid matches the grid_sampler coordinate convention.
"""
device = torch.device("cuda:0")
sizes = [(5, 7, 5), (3, 5, 5)]
densities_list = [
torch.randn(size=[num_channels, *size], device=device, dtype=torch.float32)
for size in sizes
]
# init the volume
v_trivial = Volumes(densities=densities_list)
# check the border point locations
pts_world = torch.tensor(
[[-2.0, 3.0, -2.0], [-2.0, -2.0, 1.0]], device=device, dtype=torch.float32
)[:, None]
pts_local = v_trivial.world_to_local_coords(pts_world)
pts_local_expected = torch.tensor(
[[-1.0, 1.0, -1.0], [-1.0, -1.0, 1.0]], device=device, dtype=torch.float32
)[:, None]
self.assertClose(pts_local, pts_local_expected)
# check that the central voxel has coords x_world=(0, 0, 0) and x_local(0, 0, 0)
grid_world = v_trivial.get_coord_grid(world_coordinates=True)
grid_local = v_trivial.get_coord_grid(world_coordinates=False)
for grid in (grid_world, grid_local):
x0 = grid[0, :, :, 2, 0]
y0 = grid[0, :, 3, :, 1]
z0 = grid[0, 2, :, :, 2]
for coord_line in (x0, y0, z0):
self.assertClose(coord_line, torch.zeros_like(coord_line), atol=1e-7)
x0 = grid[1, :, :, 2, 0]
y0 = grid[1, :, 2, :, 1]
z0 = grid[1, 1, :, :, 2]
for coord_line in (x0, y0, z0):
self.assertClose(coord_line, torch.zeros_like(coord_line), atol=1e-7)
# resample grid_world using grid_sampler with local coords
# -> make sure the resampled version is the same as original
for grid_world_, grid_local_, size in zip(grid_world, grid_local, sizes):
grid_world_crop = grid_world_[: size[0], : size[1], : size[2], :][None]
grid_local_crop = grid_local_[: size[0], : size[1], : size[2], :][None]
grid_world_crop_resampled = torch.nn.functional.grid_sample(
grid_world_crop.permute(0, 4, 1, 2, 3),
grid_local_crop,
align_corners=True,
).permute(0, 2, 3, 4, 1)
self.assertClose(grid_world_crop_resampled, grid_world_crop, atol=1e-7)
def test_coord_grid_transforms(
self, num_volumes=3, num_channels=4, dtype=torch.float32
):
"""
Test whether conversion between local-world coordinates of the
volume returns correct results.
"""
device = torch.device("cuda:0")
# try for 10 sets of different random sizes/centers/voxel_sizes
for _ in range(10):
size = torch.randint(high=10, size=(3,), low=3).tolist()
center = torch.randn(num_volumes, 3, dtype=torch.float32, device=device)
voxel_size = torch.rand(1, dtype=torch.float32, device=device) * 5.0 + 0.5
for densities in (
torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
),
TestVolumes._random_volume_list(
num_volumes, 3, size, num_channels, device, rand_sizes=None
)[0],
):
# init the volume structure
v = Volumes(
densities=densities,
voxel_size=voxel_size,
volume_translation=-center,
)
# get local coord grid
grid_local = v.get_coord_grid(world_coordinates=False)
# convert from world to local to world
grid_world = v.get_coord_grid(world_coordinates=True)
grid_local_2 = v.world_to_local_coords(grid_world)
grid_world_2 = v.local_to_world_coords(grid_local_2)
# assertions on shape and values of grid_world and grid_local
self.assertClose(grid_world, grid_world_2, atol=1e-5)
self.assertClose(grid_local, grid_local_2, atol=1e-5)
# check that the individual slices of the location grid have
# constant values along expected dimensions
for plane_dim in (1, 2, 3):
for grid_plane in grid_world.split(1, dim=plane_dim):
grid_coord_dim = {1: 2, 2: 1, 3: 0}[plane_dim]
grid_coord_plane = grid_plane.squeeze()[..., grid_coord_dim]
# check that all elements of grid_coord_plane are
# the same for each batch element
self.assertClose(
grid_coord_plane.reshape(num_volumes, -1).max(dim=1).values,
grid_coord_plane.reshape(num_volumes, -1).min(dim=1).values,
)
def test_clone(
self, num_volumes=3, num_channels=4, size=(6, 8, 10), dtype=torch.float32
):
"""
Test cloning of a `Volumes` object
"""
device = torch.device("cuda:0")
features = torch.randn(
size=[num_volumes, num_channels, *size], device=device, dtype=torch.float32
)
densities = torch.rand(
size=[num_volumes, 1, *size], device=device, dtype=torch.float32
)
for has_features in (True, False):
v = Volumes(
densities=densities, features=features if has_features else None
)
vnew = v.clone()
vnew._densities.data[0, 0, 0, 0, 0] += 1.0
self.assertNotAlmostEqual(
float(
(vnew.densities()[0, 0, 0, 0, 0] - v.densities()[0, 0, 0, 0, 0])
.abs()
.max()
),
0.0,
)
if has_features:
vnew._features.data[0, 0, 0, 0, 0] += 1.0
self.assertNotAlmostEqual(
float(
(vnew.features()[0, 0, 0, 0, 0] - v.features()[0, 0, 0, 0, 0])
.abs()
.max()
),
0.0,
)
def _check_vars_on_device(self, v, desired_device):
for var_name, var in vars(v).items():
if var_name != "device":
if var is not None:
self.assertTrue(var.device.type == desired_device.type)
else:
self.assertTrue(var.type == desired_device.type)
def test_to(
self, num_volumes=3, num_channels=4, size=(6, 8, 10), dtype=torch.float32
):
"""
Test the moving of the volumes from/to gpu and cpu
"""
features = torch.randn(
size=[num_volumes, num_channels, *size], dtype=torch.float32
)
densities = torch.rand(size=[num_volumes, 1, *size], dtype=dtype)
volumes = Volumes(densities=densities, features=features)
# Test support for str and torch.device
cpu_device = torch.device("cpu")
converted_volumes = volumes.to("cpu")
self.assertEqual(cpu_device, converted_volumes.device)
self.assertEqual(cpu_device, volumes.device)
self.assertIs(volumes, converted_volumes)
converted_volumes = volumes.to(cpu_device)
self.assertEqual(cpu_device, converted_volumes.device)
self.assertEqual(cpu_device, volumes.device)
self.assertIs(volumes, converted_volumes)
cuda_device = torch.device("cuda:0")
converted_volumes = volumes.to("cuda:0")
self.assertEqual(cuda_device, converted_volumes.device)
self.assertEqual(cpu_device, volumes.device)
self.assertIsNot(volumes, converted_volumes)
converted_volumes = volumes.to(cuda_device)
self.assertEqual(cuda_device, converted_volumes.device)
self.assertEqual(cpu_device, volumes.device)
self.assertIsNot(volumes, converted_volumes)
# Test device placement of internal tensors
features = features.to(cuda_device)
densities = features.to(cuda_device)
for features_ in (features, None):
volumes = Volumes(densities=densities, features=features_)
cpu_volumes = volumes.cpu()
cuda_volumes = cpu_volumes.cuda()
cuda_volumes2 = cuda_volumes.cuda()
cpu_volumes2 = cuda_volumes2.cpu()
for volumes1, volumes2 in itertools.combinations(
(volumes, cpu_volumes, cpu_volumes2, cuda_volumes, cuda_volumes2), 2
):
if volumes1 is cuda_volumes and volumes2 is cuda_volumes2:
# checks that we do not copy if the devices stay the same
assert_fun = self.assertIs
else:
assert_fun = self.assertSeparate
assert_fun(volumes1._densities, volumes2._densities)
if features_ is not None:
assert_fun(volumes1._features, volumes2._features)
for volumes_ in (volumes1, volumes2):
if volumes_ in (cpu_volumes, cpu_volumes2):
self._check_vars_on_device(volumes_, cpu_device)
else:
self._check_vars_on_device(volumes_, cuda_device)
def _check_padded(self, x_pad, x_list, grid_sizes):
"""
Check that padded tensors x_pad are the same as x_list tensors.
"""
num_volumes = len(x_list)
for i in range(num_volumes):
self.assertClose(
x_pad[i][:, : grid_sizes[i][0], : grid_sizes[i][1], : grid_sizes[i][2]],
x_list[i],
)
def test_feature_density_setters(self):
"""
Tests getters and setters for padded/list representations.
"""
device = torch.device("cuda:0")
diff_device = torch.device("cpu")
num_volumes = 30
num_channels = 4
K = 20
densities = []
features = []
grid_sizes = []
diff_grid_sizes = []
for _ in range(num_volumes):
grid_size = torch.randint(K - 1, size=(3,)).long() + 1
densities.append(
torch.rand((1, *grid_size), device=device, dtype=torch.float32)
)
features.append(
torch.rand(
(num_channels, *grid_size), device=device, dtype=torch.float32
)
)
grid_sizes.append(grid_size)
diff_grid_size = (
copy.deepcopy(grid_size) + torch.randint(2, size=(3,)).long() + 1
)
diff_grid_sizes.append(diff_grid_size)
grid_sizes = torch.stack(grid_sizes).to(device)
diff_grid_sizes = torch.stack(diff_grid_sizes).to(device)
volumes = Volumes(densities=densities, features=features)
self.assertClose(volumes.get_grid_sizes(), grid_sizes)
# test the getters
features_padded = volumes.features()
densities_padded = volumes.densities()
features_list = volumes.features_list()
densities_list = volumes.densities_list()
for x_pad, x_list in zip(
(densities_padded, features_padded, densities_padded, features_padded),
(densities_list, features_list, densities, features),
):
self._check_padded(x_pad, x_list, grid_sizes)
# test feature setters
features_new = [
torch.rand((num_channels, *grid_size), device=device, dtype=torch.float32)
for grid_size in grid_sizes
]
volumes._set_features(features_new)
features_new_list = volumes.features_list()
features_new_padded = volumes.features()
for x_pad, x_list in zip(
(features_new_padded, features_new_padded),
(features_new, features_new_list),
):
self._check_padded(x_pad, x_list, grid_sizes)
# wrong features to update
bad_features_new = [
[
torch.rand(
(num_channels, *grid_size), device=diff_device, dtype=torch.float32
)
for grid_size in diff_grid_sizes
],
torch.rand(
(num_volumes, num_channels, K + 1, K, K),
device=device,
dtype=torch.float32,
),
None,
]
for bad_features_new_ in bad_features_new:
with self.assertRaises(ValueError):
volumes._set_densities(bad_features_new_)
# test density setters
densities_new = [
torch.rand((1, *grid_size), device=device, dtype=torch.float32)
for grid_size in grid_sizes
]
volumes._set_densities(densities_new)
densities_new_list = volumes.densities_list()
densities_new_padded = volumes.densities()
for x_pad, x_list in zip(
(densities_new_padded, densities_new_padded),
(densities_new, densities_new_list),
):
self._check_padded(x_pad, x_list, grid_sizes)
# wrong densities to update
bad_densities_new = [
[
torch.rand((1, *grid_size), device=diff_device, dtype=torch.float32)
for grid_size in diff_grid_sizes
],
torch.rand(
(num_volumes, 1, K + 1, K, K), device=device, dtype=torch.float32
),
None,
]
for bad_densities_new_ in bad_densities_new:
with self.assertRaises(ValueError):
volumes._set_densities(bad_densities_new_)
# test update_padded
volumes = Volumes(densities=densities, features=features)
volumes_updated = volumes.update_padded(
densities_new, new_features=features_new
)
densities_new_list = volumes_updated.densities_list()
densities_new_padded = volumes_updated.densities()
features_new_list = volumes_updated.features_list()
features_new_padded = volumes_updated.features()
for x_pad, x_list in zip(
(
densities_new_padded,
densities_new_padded,
features_new_padded,
features_new_padded,
),
(densities_new, densities_new_list, features_new, features_new_list),
):
self._check_padded(x_pad, x_list, grid_sizes)
self.assertIs(volumes.get_grid_sizes(), volumes_updated.get_grid_sizes())
self.assertIs(
volumes.get_local_to_world_coords_transform(),
volumes_updated.get_local_to_world_coords_transform(),
)
self.assertIs(volumes.device, volumes_updated.device)
def test_constructor_for_padded_lists(self):
"""
Tests constructor for padded/list representations.
"""
device = torch.device("cuda:0")
diff_device = torch.device("cpu")
num_volumes = 3
num_channels = 4
size = (6, 8, 10)
diff_size = (6, 8, 11)
# good ways to define densities
ok_densities = [
torch.randn(
size=[num_volumes, 1, *size], device=device, dtype=torch.float32
).unbind(0),
torch.randn(
size=[num_volumes, 1, *size], device=device, dtype=torch.float32
),
]
# bad ways to define features
bad_features = [
torch.randn(
size=[num_volumes + 1, num_channels, *size],
device=device,
dtype=torch.float32,
).unbind(
0
), # list with diff batch size
torch.randn(
size=[num_volumes + 1, num_channels, *size],
device=device,
dtype=torch.float32,
), # diff batch size
torch.randn(
size=[num_volumes, num_channels, *diff_size],
device=device,
dtype=torch.float32,
).unbind(
0
), # list with different size
torch.randn(
size=[num_volumes, num_channels, *diff_size],
device=device,
dtype=torch.float32,
), # different size
torch.randn(
size=[num_volumes, num_channels, *size],
device=diff_device,
dtype=torch.float32,
), # different device
torch.randn(
size=[num_volumes, num_channels, *size],
device=diff_device,
dtype=torch.float32,
).unbind(
0
), # list with different device
]
# good ways to define features
ok_features = [
torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
).unbind(
0
), # list of features of correct size
torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
),
]
for densities in ok_densities:
for features in bad_features:
self.assertRaises(
ValueError, Volumes, densities=densities, features=features
)
for features in ok_features:
Volumes(densities=densities, features=features)
def test_constructor(
self, num_volumes=3, num_channels=4, size=(6, 8, 10), dtype=torch.float32
):
"""
Test different ways of calling the `Volumes` constructor
"""
device = torch.device("cuda:0")
# all ways to define features
features = [
torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
), # padded tensor
torch.randn(
size=[num_volumes, num_channels, *size],
device=device,
dtype=torch.float32,
).unbind(
0
), # list of features
None, # no features
]
# bad ways to define features
bad_features = [
torch.randn(
size=[num_volumes, num_channels, 2, *size],
device=device,
dtype=torch.float32,
), # 6 dims
torch.randn(
size=[num_volumes, *size], device=device, dtype=torch.float32
), # 4 dims
torch.randn(
size=[num_volumes, *size], device=device, dtype=torch.float32
).unbind(
0
), # list of 4 dim tensors
]
# all ways to define densities
densities = [
torch.randn(
size=[num_volumes, 1, *size], device=device, dtype=torch.float32
), # padded tensor
torch.randn(
size=[num_volumes, 1, *size], device=device, dtype=torch.float32
).unbind(
0
), # list of densities
]
# bad ways to define densities
bad_densities = [
None, # omitted
torch.randn(
size=[num_volumes, 1, 1, *size], device=device, dtype=torch.float32
), # 6-dim tensor
torch.randn(
size=[num_volumes, 1, 1, *size], device=device, dtype=torch.float32
).unbind(
0
), # list of 5-dim densities
]
# all possible ways to define the voxels sizes
vox_sizes = [
torch.Tensor([1.0, 1.0, 1.0]),
[1.0, 1.0, 1.0],
torch.Tensor([1.0, 1.0, 1.0])[None].repeat(num_volumes, 1),
torch.Tensor([1.0])[None].repeat(num_volumes, 1),
1.0,
torch.Tensor([1.0]),
]
# all possible ways to define the volume translations
vol_translations = [
torch.Tensor([1.0, 1.0, 1.0]),
[1.0, 1.0, 1.0],
torch.Tensor([1.0, 1.0, 1.0])[None].repeat(num_volumes, 1),
]
# wrong ways to define voxel sizes
bad_vox_sizes = [
torch.Tensor([1.0, 1.0, 1.0, 1.0]),
[1.0, 1.0, 1.0, 1.0],
torch.Tensor([]),
None,
]
# wrong ways to define the volume translations
bad_vol_translations = [
torch.Tensor([1.0, 1.0]),
[1.0, 1.0],
1.0,
torch.Tensor([1.0, 1.0, 1.0])[None].repeat(num_volumes + 1, 1),
]
def zip_with_ok_indicator(good, bad):
return zip([*good, *bad], [*([True] * len(good)), *([False] * len(bad))])
for features_, features_ok in zip_with_ok_indicator(features, bad_features):
for densities_, densities_ok in zip_with_ok_indicator(
densities, bad_densities
):
for vox_size, size_ok in zip_with_ok_indicator(
vox_sizes, bad_vox_sizes
):
for vol_translation, trans_ok in zip_with_ok_indicator(
vol_translations, bad_vol_translations
):
if (
size_ok and trans_ok and features_ok and densities_ok
): # if all entries are good we check that this doesnt throw
Volumes(
features=features_,
densities=densities_,
voxel_size=vox_size,
volume_translation=vol_translation,
)
else: # otherwise we check for ValueError
self.assertRaises(
ValueError,
Volumes,
features=features_,
densities=densities_,
voxel_size=vox_size,
volume_translation=vol_translation,
)