pytorch3d/tests/test_rendering_utils.py
Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

99 lines
3.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer.utils import TensorProperties
# Example class for testing
class TensorPropertiesTestClass(TensorProperties):
def __init__(self, x=None, y=None, device="cpu"):
super().__init__(device=device, x=x, y=y)
def clone(self):
other = TensorPropertiesTestClass()
return super().clone(other)
class TestTensorProperties(TestCaseMixin, unittest.TestCase):
def test_init(self):
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
# Check kwargs set as attributes + converted to tensors
self.assertTrue(torch.is_tensor(example.x))
self.assertTrue(torch.is_tensor(example.y))
# Check broadcasting
self.assertTrue(example.x.shape == (2,))
self.assertTrue(example.y.shape == (2,))
self.assertTrue(len(example) == 2)
def test_to(self):
# Check to method
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
device = torch.device("cuda:0")
new_example = example.to(device=device)
self.assertEqual(new_example.device, device)
example_cpu = example.cpu()
self.assertEqual(example_cpu.device, torch.device("cpu"))
example_gpu = example.cuda()
self.assertEqual(example_gpu.device.type, "cuda")
self.assertIsNotNone(example_gpu.device.index)
example_gpu1 = example.cuda(1)
self.assertEqual(example_gpu1.device, torch.device("cuda:1"))
def test_clone(self):
# Check clone method
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
new_example = example.clone()
self.assertSeparate(example.x, new_example.x)
self.assertSeparate(example.y, new_example.y)
def test_get_set(self):
# Test getitem returns an accessor which can be used to modify
# attributes at a particular index
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0, 300.0))
# update y1
example[1].y = 5.0
self.assertTrue(example.y[1] == 5.0)
# Get item and get value
ex0 = example[0]
self.assertTrue(ex0.y == 100.0)
def test_empty_input(self):
example = TensorPropertiesTestClass(x=(), y=())
self.assertTrue(len(example) == 0)
self.assertTrue(example.isempty())
def test_gather_props(self):
N = 4
x = torch.randn((N, 3, 4))
y = torch.randn((N, 5))
test_class = TensorPropertiesTestClass(x=x, y=y)
S = 15
idx = torch.tensor(np.random.choice(N, S))
test_class_gathered = test_class.gather_props(idx)
self.assertTrue(test_class_gathered.x.shape == (S, 3, 4))
self.assertTrue(test_class_gathered.y.shape == (S, 5))
for i in range(N):
inds = idx == i
if inds.sum() > 0:
# Check the gathered points in the output have the same value from
# the input.
self.assertClose(test_class_gathered.x[inds].mean(dim=0), x[i, ...])
self.assertClose(test_class_gathered.y[inds].mean(dim=0), y[i, ...])