pytorch3d/tests/pulsar/test_forward.py
Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

359 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""Basic rendering test."""
import logging
import os
import sys
import unittest
from os import path
import imageio
import numpy as np
import torch
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
LOGGER = logging.getLogger(__name__)
devices = [torch.device("cuda"), torch.device("cpu")]
class TestForward(unittest.TestCase):
"""Rendering tests."""
def test_bg_weight(self):
"""Test background reweighting."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 3 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, background_normalized_depth=0.999)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_bg_weight.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_bg_weight_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(),
[1.0, 1.0, 1.0],
rtol=1e-2,
atol=1e-2,
)
)
def test_basic_3chan(self):
"""Test rendering one image with one sphere, 3 channels."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 3 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_3chan.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_3chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(),
[0.3, 0.5, 0.7],
rtol=1e-2,
atol=1e-2,
)
)
def test_basic_1chan(self):
"""Test rendering one image with one sphere, 1 channel."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 1 channel...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=1)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_1chan.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_1chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(), [0.3], rtol=1e-2, atol=1e-2
)
)
def test_basic_8chan(self):
"""Test rendering one image with one sphere, 8 channels."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 8 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=8)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor(
[[1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.5, 0.7]], dtype=torch.float32
)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_8chan.png",
),
(result[:, :, 5:8] * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_8chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, 5:8].cpu().numpy(),
[0.3, 0.5, 0.7],
rtol=1e-2,
atol=1e-2,
)
)
self.assertTrue(
np.allclose(
result[500, 500, :5].cpu().numpy(), 1.0, rtol=1e-2, atol=1e-2
)
)
def test_principal_point(self):
"""Test shifting the principal point."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for shifted principal point...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=1)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.0]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0, 0.0, 0.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
cam_params[-2] = -250.0
cam_params[-1] = -250.0
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_principal_point.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertTrue(
np.allclose(
result[750, 750, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
)
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
cam_params[-2] = 250.0
cam_params[-1] = 250.0
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_principal_point.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertTrue(
np.allclose(
result[250, 250, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
)
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
unittest.main()