mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Update all FB license strings to the new format. Reviewed By: patricklabatut Differential Revision: D33403538 fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
181 lines
5.4 KiB
Python
Executable File
181 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""
|
|
This example demonstrates camera parameter optimization with the plain
|
|
pulsar interface. For this, a reference image has been pre-generated
|
|
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
|
|
The same scene parameterization is loaded and the camera parameters
|
|
distorted. Gradient-based optimization is used to converge towards the
|
|
original camera parameters.
|
|
Output: cam.gif.
|
|
"""
|
|
import logging
|
|
import math
|
|
from os import path
|
|
|
|
import cv2
|
|
import imageio
|
|
import numpy as np
|
|
import torch
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_rotation_6d
|
|
from torch import nn, optim
|
|
|
|
|
|
LOGGER = logging.getLogger(__name__)
|
|
N_POINTS = 20
|
|
WIDTH = 1_000
|
|
HEIGHT = 1_000
|
|
DEVICE = torch.device("cuda")
|
|
|
|
|
|
class SceneModel(nn.Module):
|
|
"""
|
|
A simple scene model to demonstrate use of pulsar in PyTorch modules.
|
|
|
|
The scene model is parameterized with sphere locations (vert_pos),
|
|
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
|
|
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
|
|
|
|
The forward method of the model renders this scene description. Any
|
|
of these parameters could instead be passed as inputs to the forward
|
|
method and come from a different model.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(SceneModel, self).__init__()
|
|
self.gamma = 0.1
|
|
# Points.
|
|
torch.manual_seed(1)
|
|
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
|
|
vert_pos[:, 2] += 25.0
|
|
vert_pos[:, :2] -= 5.0
|
|
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
|
|
self.register_parameter(
|
|
"vert_col",
|
|
nn.Parameter(
|
|
torch.rand(N_POINTS, 3, dtype=torch.float32), requires_grad=False
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"vert_rad",
|
|
nn.Parameter(
|
|
torch.rand(N_POINTS, dtype=torch.float32), requires_grad=False
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"cam_pos",
|
|
nn.Parameter(
|
|
torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32), requires_grad=True
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"cam_rot",
|
|
# We're using the 6D rot. representation for better gradients.
|
|
nn.Parameter(
|
|
matrix_to_rotation_6d(
|
|
axis_angle_to_matrix(
|
|
torch.tensor(
|
|
[
|
|
[0.02, math.pi + 0.02, 0.01],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
)
|
|
)[0],
|
|
requires_grad=True,
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"cam_sensor",
|
|
nn.Parameter(
|
|
torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True
|
|
),
|
|
)
|
|
self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)
|
|
|
|
def forward(self):
|
|
return self.renderer.forward(
|
|
self.vert_pos,
|
|
self.vert_col,
|
|
self.vert_rad,
|
|
torch.cat([self.cam_pos, self.cam_rot, self.cam_sensor]),
|
|
self.gamma,
|
|
45.0,
|
|
)
|
|
|
|
|
|
def cli():
|
|
"""
|
|
Camera optimization example using pulsar.
|
|
|
|
Writes to `cam.gif`.
|
|
"""
|
|
LOGGER.info("Loading reference...")
|
|
# Load reference.
|
|
ref = (
|
|
torch.from_numpy(
|
|
imageio.imread(
|
|
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
|
|
)[:, ::-1, :].copy()
|
|
).to(torch.float32)
|
|
/ 255.0
|
|
).to(DEVICE)
|
|
# Set up model.
|
|
model = SceneModel().to(DEVICE)
|
|
# Optimizer.
|
|
optimizer = optim.SGD(
|
|
[
|
|
{"params": [model.cam_pos], "lr": 1e-4}, # 1e-3
|
|
{"params": [model.cam_rot], "lr": 5e-6},
|
|
{"params": [model.cam_sensor], "lr": 1e-4},
|
|
]
|
|
)
|
|
|
|
LOGGER.info("Writing video to `%s`.", path.abspath("cam.gif"))
|
|
writer = imageio.get_writer("cam.gif", format="gif", fps=25)
|
|
|
|
# Optimize.
|
|
for i in range(300):
|
|
optimizer.zero_grad()
|
|
result = model()
|
|
# Visualize.
|
|
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
|
|
cv2.imshow("opt", result_im[:, :, ::-1])
|
|
writer.append_data(result_im)
|
|
overlay_img = np.ascontiguousarray(
|
|
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
|
|
:, :, ::-1
|
|
]
|
|
)
|
|
overlay_img = cv2.putText(
|
|
overlay_img,
|
|
"Step %d" % (i),
|
|
(10, 40),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
1,
|
|
(0, 0, 0),
|
|
2,
|
|
cv2.LINE_AA,
|
|
False,
|
|
)
|
|
cv2.imshow("overlay", overlay_img)
|
|
cv2.waitKey(1)
|
|
# Update.
|
|
loss = ((result - ref) ** 2).sum()
|
|
LOGGER.info("loss %d: %f", i, loss.item())
|
|
loss.backward()
|
|
optimizer.step()
|
|
writer.close()
|
|
LOGGER.info("Done.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO)
|
|
cli()
|