pytorch3d/docs/examples/pulsar_basic_unified.py
Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

90 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This example demonstrates the most trivial use of the pulsar PyTorch3D
interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
import logging
from os import path
import imageio
import torch
from pytorch3d.renderer import (
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
PulsarPointsRenderer,
)
from pytorch3d.structures import Pointclouds
LOGGER = logging.getLogger(__name__)
def cli():
"""
Basic example for the pulsar sphere renderer using the PyTorch3D interface.
Writes to `basic-pt3d.png`.
"""
LOGGER.info("Rendering on GPU...")
torch.manual_seed(1)
n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...])
# Alternatively, you can also use the look_at_view_transform to get R and T:
# R, T = look_at_view_transform(
# dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),),
# )
cameras = PerspectiveCameras(
# The focal length must be double the size for PyTorch3D because of the NDC
# coordinates spanning a range of two - and they must be normalized by the
# sensor width (see the pulsar example). This means we need here
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
focal_length=(5.0 * 2.0 / 2.0,),
R=torch.eye(3, dtype=torch.float32, device=device)[None, ...],
T=torch.zeros((1, 3), dtype=torch.float32, device=device),
image_size=((height, width),),
device=device,
)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
raster_settings = PointsRasterizationSettings(
image_size=(height, width),
radius=vert_rad,
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
# Render.
image = renderer(
pcl,
gamma=(1.0e-1,), # Renderer blending parameter gamma, in [1., 1e-5].
znear=(1.0,),
zfar=(45.0,),
radius_world=True,
bg_col=torch.ones((3,), dtype=torch.float32, device=device),
)[0]
LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png"))
imageio.imsave(
"basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()
)
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()