Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

92 lines
2.9 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <torch/extension.h>
#include <tuple>
#include "utils/pytorch3d_cutils.h"
// Compute indices of K neighbors in pointcloud p2 to points
// in pointcloud p1 which fall within a specified radius
//
// Args:
// p1: FloatTensor of shape (N, P1, D) giving a batch of pointclouds each
// containing P1 points of dimension D.
// p2: FloatTensor of shape (N, P2, D) giving a batch of pointclouds each
// containing P2 points of dimension D.
// lengths1: LongTensor, shape (N,), giving actual length of each P1 cloud.
// lengths2: LongTensor, shape (N,), giving actual length of each P2 cloud.
// K: Integer giving the upper bound on the number of samples to take
// within the radius
// radius: the radius around each point within which the neighbors need to be
// located
//
// Returns:
// p1_neighbor_idx: LongTensor of shape (N, P1, K), where
// p1_neighbor_idx[n, i, k] = j means that the kth
// neighbor to p1[n, i] in the cloud p2[n] is p2[n, j].
// This is padded with -1s both where a cloud in p2 has fewer than
// S points and where a cloud in p1 has fewer than P1 points and
// also if there are fewer than K points which satisfy the radius
// threshold.
//
// p1_neighbor_dists: FloatTensor of shape (N, P1, K) containing the squared
// distance from each point p1[n, p, :] to its K neighbors
// p2[n, p1_neighbor_idx[n, p, k], :].
// CPU implementation
std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int K,
const float radius);
// CUDA implementation
std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int K,
const float radius);
// Implementation which is exposed
// Note: the backward pass reuses the KNearestNeighborBackward kernel
inline std::tuple<at::Tensor, at::Tensor> BallQuery(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
int K,
float radius) {
if (p1.is_cuda() || p2.is_cuda()) {
#ifdef WITH_CUDA
CHECK_CUDA(p1);
CHECK_CUDA(p2);
return BallQueryCuda(
p1.contiguous(),
p2.contiguous(),
lengths1.contiguous(),
lengths2.contiguous(),
K,
radius);
#else
AT_ERROR("Not compiled with GPU support.");
#endif
}
return BallQueryCpu(
p1.contiguous(),
p2.contiguous(),
lengths1.contiguous(),
lengths2.contiguous(),
K,
radius);
}