pytorch3d/tests/test_texturing.py
Jeremy Reizenstein 9a50cf800e Fix batching bug from TexturesUV packed ambiguity, other textures tidyup
Summary:
faces_uvs_packed and verts_uvs_packed were only used in one place and the definition of the former was ambiguous. This meant that the wrong coordinates could be used for meshes other than the first in the batch. I have therefore removed both functions and build their common result inline. Added a test that a simple batch of two meshes is rendered consistently with the rendering of each alone. This test would have failed before.

I hope this fixes https://github.com/facebookresearch/pytorch3d/issues/283.

Some other small improvements to the textures code.

Reviewed By: nikhilaravi

Differential Revision: D23161936

fbshipit-source-id: f99b560a46f6b30262e07028b049812bc04350a7
2020-08-21 05:53:29 -07:00

717 lines
29 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
import torch
import torch.nn.functional as F
from common_testing import TestCaseMixin
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.mesh.textures import (
TexturesAtlas,
TexturesUV,
TexturesVertex,
_list_to_padded_wrapper,
)
from pytorch3d.structures import Meshes, list_to_packed, packed_to_list
from test_meshes import TestMeshes
def tryindex(self, index, tex, meshes, source):
tex2 = tex[index]
meshes2 = meshes[index]
tex_from_meshes = meshes2.textures
for item in source:
basic = source[item][index]
from_texture = getattr(tex2, item + "_padded")()
from_meshes = getattr(tex_from_meshes, item + "_padded")()
if isinstance(index, int):
basic = basic[None]
if len(basic) == 0:
self.assertEqual(len(from_texture), 0)
self.assertEqual(len(from_meshes), 0)
else:
self.assertClose(basic, from_texture)
self.assertClose(basic, from_meshes)
self.assertEqual(from_texture.ndim, getattr(tex, item + "_padded")().ndim)
item_list = getattr(tex_from_meshes, item + "_list")()
self.assertEqual(basic.shape[0], len(item_list))
for i, elem in enumerate(item_list):
self.assertClose(elem, basic[i])
class TestTexturesVertex(TestCaseMixin, unittest.TestCase):
def test_sample_vertex_textures(self):
"""
This tests both interpolate_vertex_colors as well as
interpolate_face_attributes.
"""
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
vert_tex = torch.tensor(
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
)
verts_features = vert_tex
tex = TexturesVertex(verts_features=[verts_features])
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
expected_vals = torch.tensor(
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
# sample_textures calls interpolate_vertex_colors
texels = mesh.sample_textures(fragments)
self.assertTrue(torch.allclose(texels, expected_vals[None, :]))
def test_sample_vertex_textures_grad(self):
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
vert_tex = torch.tensor(
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
dtype=torch.float32,
requires_grad=True,
)
verts_features = vert_tex
tex = TexturesVertex(verts_features=[verts_features])
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
grad_vert_tex = torch.tensor(
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
dtype=torch.float32,
)
texels = mesh.sample_textures(fragments)
texels.sum().backward()
self.assertTrue(hasattr(vert_tex, "grad"))
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))
def test_textures_vertex_init_fail(self):
# Incorrect sized tensors
with self.assertRaisesRegex(ValueError, "verts_features"):
TexturesVertex(verts_features=torch.rand(size=(5, 10)))
# Not a list or a tensor
with self.assertRaisesRegex(ValueError, "verts_features"):
TexturesVertex(verts_features=(1, 1, 1))
def test_clone(self):
tex = TexturesVertex(verts_features=torch.rand(size=(10, 100, 128)))
tex.verts_features_list()
tex_cloned = tex.clone()
self.assertSeparate(
tex._verts_features_padded, tex_cloned._verts_features_padded
)
self.assertClose(tex._verts_features_padded, tex_cloned._verts_features_padded)
self.assertSeparate(tex.valid, tex_cloned.valid)
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
for i in range(tex._N):
self.assertSeparate(
tex._verts_features_list[i], tex_cloned._verts_features_list[i]
)
self.assertClose(
tex._verts_features_list[i], tex_cloned._verts_features_list[i]
)
def test_detach(self):
tex = TexturesVertex(
verts_features=torch.rand(size=(10, 100, 128), requires_grad=True)
)
tex.verts_features_list()
tex_detached = tex.detach()
self.assertFalse(tex_detached._verts_features_padded.requires_grad)
self.assertClose(
tex_detached._verts_features_padded, tex._verts_features_padded
)
for i in range(tex._N):
self.assertClose(
tex._verts_features_list[i], tex_detached._verts_features_list[i]
)
self.assertFalse(tex_detached._verts_features_list[i].requires_grad)
def test_extend(self):
B = 10
mesh = TestMeshes.init_mesh(B, 30, 50)
V = mesh._V
tex_uv = TexturesVertex(verts_features=torch.randn((B, V, 3)))
tex_mesh = Meshes(
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
)
N = 20
new_mesh = tex_mesh.extend(N)
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
tex_init = tex_mesh.textures
new_tex = new_mesh.textures
for i in range(len(tex_mesh)):
for n in range(N):
self.assertClose(
tex_init.verts_features_list()[i],
new_tex.verts_features_list()[i * N + n],
)
self.assertClose(
tex_init._num_faces_per_mesh[i],
new_tex._num_faces_per_mesh[i * N + n],
)
self.assertAllSeparate(
[tex_init.verts_features_padded(), new_tex.verts_features_padded()]
)
with self.assertRaises(ValueError):
tex_mesh.extend(N=-1)
def test_padded_to_packed(self):
# Case where each face in the mesh has 3 unique uv vertex indices
# - i.e. even if a vertex is shared between multiple faces it will
# have a unique uv coordinate for each face.
num_verts_per_mesh = [9, 6]
D = 10
verts_features_list = [torch.rand(v, D) for v in num_verts_per_mesh]
verts_features_packed = list_to_packed(verts_features_list)[0]
verts_features_list = packed_to_list(verts_features_packed, num_verts_per_mesh)
tex = TexturesVertex(verts_features=verts_features_list)
# This is set inside Meshes when textures is passed as an input.
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
tex1 = tex.clone()
tex1._num_verts_per_mesh = num_verts_per_mesh
verts_packed = tex1.verts_features_packed()
verts_verts_list = tex1.verts_features_list()
verts_padded = tex1.verts_features_padded()
for f1, f2 in zip(verts_verts_list, verts_features_list):
self.assertTrue((f1 == f2).all().item())
self.assertTrue(verts_packed.shape == (sum(num_verts_per_mesh), D))
self.assertTrue(verts_padded.shape == (2, 9, D))
# Case where num_verts_per_mesh is not set and textures
# are initialized with a padded tensor.
tex2 = TexturesVertex(verts_features=verts_padded)
verts_packed = tex2.verts_features_packed()
verts_list = tex2.verts_features_list()
# Packed is just flattened padded as num_verts_per_mesh
# has not been provided.
self.assertTrue(verts_packed.shape == (9 * 2, D))
for i, (f1, f2) in enumerate(zip(verts_list, verts_features_list)):
n = num_verts_per_mesh[i]
self.assertTrue((f1[:n] == f2).all().item())
def test_getitem(self):
N = 5
V = 20
source = {"verts_features": torch.randn(size=(N, 10, 128))}
tex = TexturesVertex(verts_features=source["verts_features"])
verts = torch.rand(size=(N, V, 3))
faces = torch.randint(size=(N, 10, 3), high=V)
meshes = Meshes(verts=verts, faces=faces, textures=tex)
tryindex(self, 2, tex, meshes, source)
tryindex(self, slice(0, 2, 1), tex, meshes, source)
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([1, 2], dtype=torch.int64)
tryindex(self, index, tex, meshes, source)
tryindex(self, [2, 4], tex, meshes, source)
class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
def test_sample_texture_atlas(self):
N, F, R = 1, 2, 2
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
faces_atlas = torch.rand(size=(N, F, R, R, 3))
tex = TexturesAtlas(atlas=faces_atlas)
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
expected_vals = torch.tensor(
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
)
expected_vals = torch.zeros((1, 1, 1, 2, 3), dtype=torch.float32)
expected_vals[..., 0, :] = faces_atlas[0, 0, 0, 1, ...]
expected_vals[..., 1, :] = faces_atlas[0, 1, 1, 0, ...]
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
texels = mesh.textures.sample_textures(fragments)
self.assertTrue(torch.allclose(texels, expected_vals))
def test_textures_atlas_grad(self):
N, F, R = 1, 2, 2
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
faces_atlas = torch.rand(size=(N, F, R, R, 3), requires_grad=True)
tex = TexturesAtlas(atlas=faces_atlas)
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
texels = mesh.textures.sample_textures(fragments)
grad_tex = torch.rand_like(texels)
grad_expected = torch.zeros_like(faces_atlas)
grad_expected[0, 0, 0, 1, :] = grad_tex[..., 0:1, :]
grad_expected[0, 1, 1, 0, :] = grad_tex[..., 1:2, :]
texels.backward(grad_tex)
self.assertTrue(hasattr(faces_atlas, "grad"))
self.assertTrue(torch.allclose(faces_atlas.grad, grad_expected))
def test_textures_atlas_init_fail(self):
# Incorrect sized tensors
with self.assertRaisesRegex(ValueError, "atlas"):
TexturesAtlas(atlas=torch.rand(size=(5, 10, 3)))
# Not a list or a tensor
with self.assertRaisesRegex(ValueError, "atlas"):
TexturesAtlas(atlas=(1, 1, 1))
def test_clone(self):
tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3)))
tex.atlas_list()
tex_cloned = tex.clone()
self.assertSeparate(tex._atlas_padded, tex_cloned._atlas_padded)
self.assertClose(tex._atlas_padded, tex_cloned._atlas_padded)
self.assertSeparate(tex.valid, tex_cloned.valid)
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
for i in range(tex._N):
self.assertSeparate(tex._atlas_list[i], tex_cloned._atlas_list[i])
self.assertClose(tex._atlas_list[i], tex_cloned._atlas_list[i])
def test_detach(self):
tex = TexturesAtlas(atlas=torch.rand(size=(1, 10, 2, 2, 3), requires_grad=True))
tex.atlas_list()
tex_detached = tex.detach()
self.assertFalse(tex_detached._atlas_padded.requires_grad)
self.assertClose(tex_detached._atlas_padded, tex._atlas_padded)
for i in range(tex._N):
self.assertFalse(tex_detached._atlas_list[i].requires_grad)
self.assertClose(tex._atlas_list[i], tex_detached._atlas_list[i])
def test_extend(self):
B = 10
mesh = TestMeshes.init_mesh(B, 30, 50)
F = mesh._F
tex_uv = TexturesAtlas(atlas=torch.randn((B, F, 2, 2, 3)))
tex_mesh = Meshes(
verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tex_uv
)
N = 20
new_mesh = tex_mesh.extend(N)
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
tex_init = tex_mesh.textures
new_tex = new_mesh.textures
for i in range(len(tex_mesh)):
for n in range(N):
self.assertClose(
tex_init.atlas_list()[i], new_tex.atlas_list()[i * N + n]
)
self.assertClose(
tex_init._num_faces_per_mesh[i],
new_tex._num_faces_per_mesh[i * N + n],
)
self.assertAllSeparate([tex_init.atlas_padded(), new_tex.atlas_padded()])
with self.assertRaises(ValueError):
tex_mesh.extend(N=-1)
def test_padded_to_packed(self):
# Case where each face in the mesh has 3 unique uv vertex indices
# - i.e. even if a vertex is shared between multiple faces it will
# have a unique uv coordinate for each face.
R = 2
N = 20
num_faces_per_mesh = torch.randint(size=(N,), low=0, high=30)
atlas_list = [torch.rand(f, R, R, 3) for f in num_faces_per_mesh]
tex = TexturesAtlas(atlas=atlas_list)
# This is set inside Meshes when textures is passed as an input.
# Here we set _num_faces_per_mesh explicity.
tex1 = tex.clone()
tex1._num_faces_per_mesh = num_faces_per_mesh.tolist()
atlas_packed = tex1.atlas_packed()
atlas_list_new = tex1.atlas_list()
atlas_padded = tex1.atlas_padded()
for f1, f2 in zip(atlas_list_new, atlas_list):
self.assertTrue((f1 == f2).all().item())
sum_F = num_faces_per_mesh.sum()
max_F = num_faces_per_mesh.max().item()
self.assertTrue(atlas_packed.shape == (sum_F, R, R, 3))
self.assertTrue(atlas_padded.shape == (N, max_F, R, R, 3))
# Case where num_faces_per_mesh is not set and textures
# are initialized with a padded tensor.
atlas_list_padded = _list_to_padded_wrapper(atlas_list)
tex2 = TexturesAtlas(atlas=atlas_list_padded)
atlas_packed = tex2.atlas_packed()
atlas_list_new = tex2.atlas_list()
# Packed is just flattened padded as num_faces_per_mesh
# has not been provided.
self.assertTrue(atlas_packed.shape == (N * max_F, R, R, 3))
for i, (f1, f2) in enumerate(zip(atlas_list_new, atlas_list)):
n = num_faces_per_mesh[i]
self.assertTrue((f1[:n] == f2).all().item())
def test_getitem(self):
N = 5
V = 20
source = {"atlas": torch.randn(size=(N, 10, 4, 4, 3))}
tex = TexturesAtlas(atlas=source["atlas"])
verts = torch.rand(size=(N, V, 3))
faces = torch.randint(size=(N, 10, 3), high=V)
meshes = Meshes(verts=verts, faces=faces, textures=tex)
tryindex(self, 2, tex, meshes, source)
tryindex(self, slice(0, 2, 1), tex, meshes, source)
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([1, 2], dtype=torch.int64)
tryindex(self, index, tex, meshes, source)
tryindex(self, [2, 4], tex, meshes, source)
class TestTexturesUV(TestCaseMixin, unittest.TestCase):
def test_sample_textures_uv(self):
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
dummy_verts = torch.zeros(4, 3)
vert_uvs = torch.tensor([[1, 0], [0, 1], [1, 1], [0, 0]], dtype=torch.float32)
face_uvs = torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64)
interpolated_uvs = torch.tensor(
[[0.5 + 0.2, 0.3 + 0.2], [0.6, 0.3 + 0.6]], dtype=torch.float32
)
# Create a dummy texture map
H = 2
W = 2
x = torch.linspace(0, 1, W).view(1, W).expand(H, W)
y = torch.linspace(0, 1, H).view(H, 1).expand(H, W)
tex_map = torch.stack([x, y], dim=2).view(1, H, W, 2)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=pix_to_face,
dists=pix_to_face,
)
tex = TexturesUV(maps=tex_map, faces_uvs=[face_uvs], verts_uvs=[vert_uvs])
meshes = Meshes(verts=[dummy_verts], faces=[face_uvs], textures=tex)
mesh_textures = meshes.textures
texels = mesh_textures.sample_textures(fragments)
# Expected output
pixel_uvs = interpolated_uvs * 2.0 - 1.0
pixel_uvs = pixel_uvs.view(2, 1, 1, 2)
tex_map = torch.flip(tex_map, [1])
tex_map = tex_map.permute(0, 3, 1, 2)
tex_map = torch.cat([tex_map, tex_map], dim=0)
expected_out = F.grid_sample(tex_map, pixel_uvs, align_corners=False)
self.assertTrue(torch.allclose(texels.squeeze(), expected_out.squeeze()))
def test_textures_uv_init_fail(self):
# Maps has wrong shape
with self.assertRaisesRegex(ValueError, "maps"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3, 4)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
# faces_uvs has wrong shape
with self.assertRaisesRegex(ValueError, "faces_uvs"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
# verts_uvs has wrong shape
with self.assertRaisesRegex(ValueError, "verts_uvs"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2, 3)),
)
# verts has different batch dim to faces
with self.assertRaisesRegex(ValueError, "verts_uvs"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(8, 15, 2)),
)
# maps has different batch dim to faces
with self.assertRaisesRegex(ValueError, "maps"):
TexturesUV(
maps=torch.ones((8, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
# verts on different device to faces
with self.assertRaisesRegex(ValueError, "verts_uvs"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2, 3), device="cuda"),
)
# maps on different device to faces
with self.assertRaisesRegex(ValueError, "map"):
TexturesUV(
maps=torch.ones((5, 16, 16, 3), device="cuda"),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
def test_clone(self):
tex = TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
tex.faces_uvs_list()
tex.verts_uvs_list()
tex_cloned = tex.clone()
self.assertSeparate(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
self.assertClose(tex._faces_uvs_padded, tex_cloned._faces_uvs_padded)
self.assertSeparate(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
self.assertClose(tex._verts_uvs_padded, tex_cloned._verts_uvs_padded)
self.assertSeparate(tex._maps_padded, tex_cloned._maps_padded)
self.assertClose(tex._maps_padded, tex_cloned._maps_padded)
self.assertSeparate(tex.valid, tex_cloned.valid)
self.assertTrue(tex.valid.eq(tex_cloned.valid).all())
for i in range(tex._N):
self.assertSeparate(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
self.assertClose(tex._faces_uvs_list[i], tex_cloned._faces_uvs_list[i])
self.assertSeparate(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
self.assertClose(tex._verts_uvs_list[i], tex_cloned._verts_uvs_list[i])
# tex._maps_list is not use anywhere so it's not stored. We call it explicitly
self.assertSeparate(tex.maps_list()[i], tex_cloned.maps_list()[i])
self.assertClose(tex.maps_list()[i], tex_cloned.maps_list()[i])
def test_detach(self):
tex = TexturesUV(
maps=torch.ones((5, 16, 16, 3), requires_grad=True),
faces_uvs=torch.rand(size=(5, 10, 3)),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
tex.faces_uvs_list()
tex.verts_uvs_list()
tex_detached = tex.detach()
self.assertFalse(tex_detached._maps_padded.requires_grad)
self.assertClose(tex._maps_padded, tex_detached._maps_padded)
self.assertFalse(tex_detached._verts_uvs_padded.requires_grad)
self.assertClose(tex._verts_uvs_padded, tex_detached._verts_uvs_padded)
self.assertFalse(tex_detached._faces_uvs_padded.requires_grad)
self.assertClose(tex._faces_uvs_padded, tex_detached._faces_uvs_padded)
for i in range(tex._N):
self.assertFalse(tex_detached._verts_uvs_list[i].requires_grad)
self.assertClose(tex._verts_uvs_list[i], tex_detached._verts_uvs_list[i])
self.assertFalse(tex_detached._faces_uvs_list[i].requires_grad)
self.assertClose(tex._faces_uvs_list[i], tex_detached._faces_uvs_list[i])
# tex._maps_list is not use anywhere so it's not stored. We call it explicitly
self.assertFalse(tex_detached.maps_list()[i].requires_grad)
self.assertClose(tex.maps_list()[i], tex_detached.maps_list()[i])
def test_extend(self):
B = 5
mesh = TestMeshes.init_mesh(B, 30, 50)
V = mesh._V
num_faces = mesh.num_faces_per_mesh()
num_verts = mesh.num_verts_per_mesh()
faces_uvs_list = [torch.randint(size=(f, 3), low=0, high=V) for f in num_faces]
verts_uvs_list = [torch.rand(v, 2) for v in num_verts]
tex_uv = TexturesUV(
maps=torch.ones((B, 16, 16, 3)),
faces_uvs=faces_uvs_list,
verts_uvs=verts_uvs_list,
)
tex_mesh = Meshes(
verts=mesh.verts_list(), faces=mesh.faces_list(), textures=tex_uv
)
N = 2
new_mesh = tex_mesh.extend(N)
self.assertEqual(len(tex_mesh) * N, len(new_mesh))
tex_init = tex_mesh.textures
new_tex = new_mesh.textures
for i in range(len(tex_mesh)):
for n in range(N):
self.assertClose(
tex_init.verts_uvs_list()[i], new_tex.verts_uvs_list()[i * N + n]
)
self.assertClose(
tex_init.faces_uvs_list()[i], new_tex.faces_uvs_list()[i * N + n]
)
self.assertClose(
tex_init.maps_padded()[i, ...], new_tex.maps_padded()[i * N + n]
)
self.assertClose(
tex_init._num_faces_per_mesh[i],
new_tex._num_faces_per_mesh[i * N + n],
)
self.assertAllSeparate(
[
tex_init.faces_uvs_padded(),
new_tex.faces_uvs_padded(),
tex_init.verts_uvs_padded(),
new_tex.verts_uvs_padded(),
tex_init.maps_padded(),
new_tex.maps_padded(),
]
)
with self.assertRaises(ValueError):
tex_mesh.extend(N=-1)
def test_padded_to_packed(self):
# Case where each face in the mesh has 3 unique uv vertex indices
# - i.e. even if a vertex is shared between multiple faces it will
# have a unique uv coordinate for each face.
N = 2
faces_uvs_list = [
torch.tensor([[0, 1, 2], [3, 5, 4], [7, 6, 8]]),
torch.tensor([[0, 1, 2], [3, 4, 5]]),
] # (N, 3, 3)
verts_uvs_list = [torch.ones(9, 2), torch.ones(6, 2)]
num_faces_per_mesh = [f.shape[0] for f in faces_uvs_list]
num_verts_per_mesh = [v.shape[0] for v in verts_uvs_list]
tex = TexturesUV(
maps=torch.ones((N, 16, 16, 3)),
faces_uvs=faces_uvs_list,
verts_uvs=verts_uvs_list,
)
# This is set inside Meshes when textures is passed as an input.
# Here we set _num_faces_per_mesh and _num_verts_per_mesh explicity.
tex1 = tex.clone()
tex1._num_faces_per_mesh = num_faces_per_mesh
tex1._num_verts_per_mesh = num_verts_per_mesh
verts_list = tex1.verts_uvs_list()
verts_padded = tex1.verts_uvs_padded()
faces_list = tex1.faces_uvs_list()
faces_padded = tex1.faces_uvs_padded()
for f1, f2 in zip(faces_list, faces_uvs_list):
self.assertTrue((f1 == f2).all().item())
for f1, f2 in zip(verts_list, verts_uvs_list):
self.assertTrue((f1 == f2).all().item())
self.assertTrue(faces_padded.shape == (2, 3, 3))
self.assertTrue(verts_padded.shape == (2, 9, 2))
# Case where num_faces_per_mesh is not set and faces_verts_uvs
# are initialized with a padded tensor.
tex2 = TexturesUV(
maps=torch.ones((N, 16, 16, 3)),
verts_uvs=verts_padded,
faces_uvs=faces_padded,
)
faces_list = tex2.faces_uvs_list()
verts_list = tex2.verts_uvs_list()
for i, (f1, f2) in enumerate(zip(faces_list, faces_uvs_list)):
n = num_faces_per_mesh[i]
self.assertTrue((f1[:n] == f2).all().item())
for i, (f1, f2) in enumerate(zip(verts_list, verts_uvs_list)):
n = num_verts_per_mesh[i]
self.assertTrue((f1[:n] == f2).all().item())
def test_to(self):
tex = TexturesUV(
maps=torch.ones((5, 16, 16, 3)),
faces_uvs=torch.randint(size=(5, 10, 3), high=15),
verts_uvs=torch.rand(size=(5, 15, 2)),
)
device = torch.device("cuda:0")
tex = tex.to(device)
self.assertTrue(tex._faces_uvs_padded.device == device)
self.assertTrue(tex._verts_uvs_padded.device == device)
self.assertTrue(tex._maps_padded.device == device)
def test_getitem(self):
N = 5
V = 20
source = {
"maps": torch.rand(size=(N, 1, 1, 3)),
"faces_uvs": torch.randint(size=(N, 10, 3), high=V),
"verts_uvs": torch.randn(size=(N, V, 2)),
}
tex = TexturesUV(
maps=source["maps"],
faces_uvs=source["faces_uvs"],
verts_uvs=source["verts_uvs"],
)
verts = torch.rand(size=(N, V, 3))
faces = torch.randint(size=(N, 10, 3), high=V)
meshes = Meshes(verts=verts, faces=faces, textures=tex)
tryindex(self, 2, tex, meshes, source)
tryindex(self, slice(0, 2, 1), tex, meshes, source)
index = torch.tensor([1, 0, 1, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([0, 0, 0, 0, 0], dtype=torch.bool)
tryindex(self, index, tex, meshes, source)
index = torch.tensor([1, 2], dtype=torch.int64)
tryindex(self, index, tex, meshes, source)
tryindex(self, [2, 4], tex, meshes, source)